Special imaging study shows failing hearts are ’energy starved’

Findings could point way to new treatments

Using magnetic resonance spectroscopy (MRS) for the first time to examine energy production biochemistry in a beating human heart, Johns Hopkins researchers have found substantial energy deficits in failing hearts.

The findings, published in the January 18 issue of the Proceedings of the National Academy of Sciences, confirm what many scientists have conjectured for years about heart failure, and suggest new treatments designed to reduce energy demand and/or augment energy transfer.

“The heart consumes more energy per gram than any other organ,” notes Paul A. Bottomley, Ph.D., lead researcher and director of magnetic resonance research at the Johns Hopkins Department of Radiology. “While scientists have long known that nucleotide adenosine triphosphate (ATP) is the chemical that fuels heart contractions and that creatine kinase (CK) is the enzyme for one of the sources of ATP, we believe this is the first time someone has actually measured the flux of ATP produced by CK reaction in the beating human heart.”

Specifically, Bottomley and a team of cardiologists and radiologists at Hopkins used MRS to provide direct molecular-level measurements of the CK supply in normal, stressed and failing human hearts. Other team members include Robert G. Weiss, M.D., and Gary Gerstenblith, M.D., both in the Cardiology Division of the Hopkins Department of Medicine.

For the study, the researchers used an MRI device that combines conventional magnetic resonance imaging with spectroscopy to provide not only images of the anatomy, but also direct measurements of the concentrations of various important biochemicals and their chemical reaction rates within the cells of various tissues. They first performed MRS on 14 healthy volunteers to measure cardiac CK flux at rest and with pharmaceutically induced stress to determine whether increased energy demand during stress increases the rate of ATP synthesis through CK.

Then, 17 patients with histories of heart failure were similarly tested to measure the CK flux. Results showed that CK flux in healthy hearts is adequate to supply energy to the heart over a fairly wide normal range of rest and stress conditions.

However, in patients with mild-to-moderate heart failure, there was a 50 percent reduction in the ATP energy supplied by the CK reaction. “The failing hearts have an energy supply deficit,” says Bottomley. “The reduction is sufficiently large that the supply may be insufficient to match energy demands of the heart during stress or exercise, which is often when symptoms appear. Many factors may contribute to human heart failure, but a failure in the energy supply would certainly affect the heart’s function if supply can’t be met.”

Media Contact

Gary Stephenson EurekAlert!

More Information:

http://www.jhmi.edu

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Nerve cells of blind mice retain their visual function

Nerve cells in the retina were analysed at TU Wien (Vienna) using microelectrodes. They show astonishingly stable behavior – good news for retina implants. The retina is often referred to…

State-wide center for quantum science

Karlsruhe Institute of Technology joins IQST as a new partner. The mission of IQST is to further our understanding of nature and develop innovative technologies based on quantum science by…

Newly designed nanomaterial shows promise as antimicrobial agent

Rice scientists develop nanocrystals that kill bacteria under visible light. Newly developed halide perovskite nanocrystals (HPNCs) show potential as antimicrobial agents that are stable, effective and easy to produce. After…