UF, nine other universities complete ultrahigh-speed data network
Whether mapping genes, probing elemental particles or monitoring global warming, more and more scientists rely on massive data vaults located at universities and institutions around the world.
Now, researchers at 10 Florida universities have the infrastructure for a computer network that ensures that capability – one faster than any other education-based network in the Southeast and among the top in the nation in speed and capacity.
Two and a half years in the making, the Florida LambdaRail Network is expected to be operating among all its member universities this week. The network, which can move information at speeds of 10 gigabits per second, has space for a total of 32 10-gigabit networks, or channels. The result: The next generation Internet has 100 times more capacity than what was available to UF previously – capacity that members will be able to purchase at a fraction of its current cost.
“Everyone believes that high-speed networking and grid technology is the future of science,” said Marc Hoit, UF’s interim associate provost of information technology and one of several UF officials involved in the project. “You have to have a high-speed network, and we now have one of the best.”
FLR is part of the National Lambda Rail, an initiative to create a national high-speed information infrastructure for research universities and technology companies. Similar regional optical networks are under way in Texas, Virginia, New York and other states — but Florida’s FLR is the only one paid for in full by its member universities, Hoit said.
All but four of Florida’s public universities are participants in the network, which also includes the Florida Institute of Technology, Nova Southeastern University and the University of Miami.
The network relies on so-called “dark fiber,” existing buried fiber optic cable that wasn’t yet “lit up,” or tapped for use. UF won the contract for network operations and design, and UF technologists have played a lead role in designing a system to exploit more than 1,540 miles of dark fiber connecting all the member universities. Strategic partners included Cisco Systems, which provided high-speed routers and other equipment, and FiberCo, a fiber holding company. FiberCo facilitated FLRs purchase of 1540 route miles from Level3 Communications, Inc.
Dave Pokorney, UFs director of network services and the chief technology officer of the Florida LambdaRail, said the network is the fastest among higher education networks in the Southeast and one of the fastest in the nation.
Universities paid to participate on FLR on a sliding scale based on their size and the proposed use, with UF contributing about $1 million so far, Hoit said. The annual operating cost is expected to closely track UF’s previous Internet connection cost of $500,000, but, Pokorney said, “it’s many orders of magnitude faster than the prior network and makes provisioning of new services easier and at much reduced cost.
Casual users at the universities won’t notice the difference. But the massive amount of capacity is key to researchers such as Paul Avery, a UF professor of physics.
Before the FLR, the fastest connection available to UF physicists was about one-sixteenth what it is now, Avery said. That’s not nearly enough for the vast data sets soon to be produced by such experimental facilities as the world’s highest energy particle collider, the Large Hadron Collider near Geneva, he said.
Researchers will use the collider to smash protons and ions into each other at higher energies than ever achieved before. The collisions – aimed at allowing scientists to examine the structure of matter and recreate the conditions just after the “Big Bang” – will produce trillions of particles, each of which will require detailed analysis. The resulting database is so huge that only those with the fastest networks will be able to tap into and manipulate it.
“We’re talking about moving petabytes of data, where a petabyte is a million gigabytes,” Avery said. “With the old system, it would have taken us months to download data that will now require only a few days.”
Avery, who studies high-energy physics, directs two nationwide National Science Foundation-projects aimed at engineering ultrafast computer grids. Both the GriPhyN Project and the International Virtual Data Grid Laboratory are aimed at helping scientists access and crunch the numbers from the collider and other astronomy and physics experiments.
Other Florida universities are tapping the FLR network to do research the impact of hurricanes, tornadoes and thunderstorms; to enhance distance-learning capabilities and for large-scale scientific simulation.
Media Contact
More Information:
http://www.ufl.eduAll latest news from the category: Information Technology
Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.
This area covers topics such as IT services, IT architectures, IT management and telecommunications.
Newest articles
Compact LCOS Microdisplay with Fast CMOS Backplane
…for High-Speed Light Modulation. Researchers from the Fraunhofer Institute for Photonic Microsystems IPMS, in collaboration with HOLOEYE Photonics AG, have developed a compact LCOS microdisplay with high refresh rates that…
New perspectives for material detection
CRC MARIE enters third funding period: A major success for terahertz research: Scientists at the University of Duisburg-Essen and the Ruhr University Bochum have been researching mobile material detection since…
CD Laboratory at TU Graz Researches New Semiconductor Materials
Using energy- and resource-saving methods, a research team at the Institute of Inorganic Chemistry at TU Graz aims to produce high-quality doped silicon layers for the electronics and solar industries….