Short-term bio sensors monitor from afar

A temporary under-the-skin sensor could monitor a variety of health indicators for soldiers, athletes, diabetics, infants, and critically ill patients without wires and at a distance, according to a team of Penn State chemical engineers.

"We were asked to develop micro sensors for metabolic monitoring of troops," says Dr. Michael Pishko, professor of chemical engineering and materials science and engineering. "These implantable sensors are intended to monitor the physiology of troops in the field."

By monitoring glucose, oxygen, lactose and pyruvate, the U.S. Army hopes to be able to assess the metabolic health of troops in the field and improve the response to the injured.

The researchers, who include Pishko, Dr. Amos M. Mugweru, postdoctoral researcher, and Becky Clark, graduate student in chemical engineering, designed an implantable glucose sensor of glucose oxidase molecules – the enzyme that reacts to glucose – immobilized in photopolymerized and microlithographically patterned film. The polymer exchanges electrons with the glucose oxide to produce a current, which is the signal that can be monitored from afar.

"We cannot make the sensors too small, because they need to be big enough to handle and sturdy enough to be inserted without bending or breaking," says Pishko. "We do want to have two to four sensors per indicator so that the signal is verifiable and viable even if one sensor fails."

Sensors could be bundled in groups depending on the metabolite to be monitored.

"The enzymes entrapped in these polymer films and containing biocompatible hydrogels show good stability and sensitivity," the researchers told attendees today (Aug. 31) at the 230th American Chemical Society National Meeting in Washington, D.C.

The military is interested in monitoring glucose, pyruvate, lactate and oxygen for an overall metabolic picture, so four separate sets of sensors would be necessary, each individually addressable. Personnel in a distant base camp could monitor the soldiers’ health and relay information into the field. These metabolic readings would also help medics decide who to treat first and assess the severity of injuries.

Individual sensors also have their place. The researchers are working with the Juvenile Diabetes Foundation on glucose sensors. Exercise physiologists would like to be able to monitor lactate as a measure of how hard muscles are working. Pediatricians would also like to be able to monitor the functions of the tiniest of newborns.

Because these sensors would be implantable and temporary, one day, marathon runners might need not only to pin on their numbers, but also to receive their implantable metabolic sensor array before approaching the starting line.

"The body is hostile to this kind of implant and the sensors will eventually wear out," says Pishko. "For these applications, the sensors only need to work for a short period of time. Even for the soldiers, 24 to 72 hours is sufficient."

Media Contact

A’ndrea Elyse Messer EurekAlert!

More Information:

http://www.psu.edu

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

High-performance cerium oxide-based thermal switch for efficient heat flow control and sustainable energy systems.

Durable, Efficient, Sustainable: The Rise of Cerium Oxide Thermal Switches

Groundbreaking cerium oxide-based thermal switches achieve remarkable performance, transforming heat flow control with sustainable and efficient technology. Cerium Oxide-Based Thermal Switches Revolutionize Heat Flow Control Thermal switches, which electrically control…

Industrial robots lowering CO2 emissions in manufacturing for sustainable global trade.

How Industrial Robots are Reducing Emissions in Global Manufacturing

A new study explores the intersection of industrial automation and environmental sustainability, focusing on the role of industrial robots in reducing the carbon intensity of manufacturing exports. The research demonstrates…

3D-printed bioceramic grafts for craniomaxillofacial bone regeneration, showcasing precision medicine and patient-specific solutions.

Patients Can Heal Through Precise, Personalized Bioceramic Grafts

A recent review is transforming the landscape of craniomaxillofacial bone regeneration with the introduction of personalized bioceramic grafts. This pioneering research explores the fabrication and clinical potential of synthetic grafts…