Super high temperature, high wear SiAlON coatings made using innovative production methods

Structural and chemical compositions of Si-Al Oxy-Nitride coatings altered through the use of reactive DC magnetron sputtering


Sialons are ceramics possessing chemical inertness, good thermal shock resistance, and excellent mechanical properties that are retained up to high temperatures. These properties mean sialon systems have found considerable applications in engineering.

Sialons are almost never found as natural minerals and sialon powders must be synthesized. They are commonly synthesized by sintering or a carbothermal reduction process. This study looks at using reactive dc magnetron sputtering to produce Sialon coatings.

The work, published in AZojomo, by Ramón Álvaro Vargas-Ortiz and Francisco Javier Espinoza-Beltrán from Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), studies changes in structure and chemical composition of coatings produced using variations of the dc magnetron sputtering technique.

The alterations made were oxygen flux, nitrogen flux and substrate bias potential. The researchers found they were able to produce coatings that ranged from pure alumina, through AlN to (Si,Al)O and (Si,Al)(O,N).

This research opens up a whole range of possibilities for using Sialons in engineering practice as coatings for high temperature and high wear applications.

Media Contact

Dr. Ian Birkby EurekAlert!

More Information:

http://www.azonetwork.com

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

High-performance cerium oxide-based thermal switch for efficient heat flow control and sustainable energy systems.

Durable, Efficient, Sustainable: The Rise of Cerium Oxide Thermal Switches

Groundbreaking cerium oxide-based thermal switches achieve remarkable performance, transforming heat flow control with sustainable and efficient technology. Cerium Oxide-Based Thermal Switches Revolutionize Heat Flow Control Thermal switches, which electrically control…

Industrial robots lowering CO2 emissions in manufacturing for sustainable global trade.

How Industrial Robots are Reducing Emissions in Global Manufacturing

A new study explores the intersection of industrial automation and environmental sustainability, focusing on the role of industrial robots in reducing the carbon intensity of manufacturing exports. The research demonstrates…

3D-printed bioceramic grafts for craniomaxillofacial bone regeneration, showcasing precision medicine and patient-specific solutions.

Patients Can Heal Through Precise, Personalized Bioceramic Grafts

A recent review is transforming the landscape of craniomaxillofacial bone regeneration with the introduction of personalized bioceramic grafts. This pioneering research explores the fabrication and clinical potential of synthetic grafts…