Scientists sequence DNA of woolly mammoth
Experts in ancient DNA from McMaster University (Canada) have teamed up with genome researchers from Penn State University (USA) for the investigation of permafrost bone samples from Siberia. The project also involved paleontologists from the American Museum of Natural History (USA) and researchers from Russia, the United Kingdom, France, and Germany. The researchers report on the first genomic sequences from a woolly mammoth will be published on 22 December 2005 by the journal Science on the Science Express website. This majestic mammal roamed grassy plains of the Northern Hemisphere until it became extinct about 10,000 years ago. The scientific breakthrough allows for the first time comparion of this ancient species with todays populations of African and Indian elephants, not just at the level of mitochondrial sequences, but also encompassing information from the nuclear genome.
Analyzing organellar DNA from mitochondria has been the only method of studying ancient DNA in the past, as it is more tractable due to its 1000-fold higher copy number per cell. However, the mitochondrial genome codes for only a tiny fraction of an organisms genetic information — 0.0006 percent in the case of a mammal. In contrast, most hereditary information is organized on chromosomes located in the cells nucleus (nuclear DNA). A mammoth was chosen for study in part because of its close evolutionary relationship to the African elephant, whose nuclear DNA sequence has been made publicly available by the Broad Institute in Cambridge, Massachusetts (USA). Using comparisons with elephant DNA, the researchers identified 13 million base pairs as being nuclear DNA from the mammoth, which they showed to be 98.5 percent identical to nuclear DNA from an African elephant.
The project became possible through the discovery of exceptionally well preserved remains of a mammoth skeleton in the permafrost soil of northern Siberia, in combination with a novel high-throughput sequencing technique that could cope with the heavily fragmented DNA retrieved from the organisms mandible, its jaws. The bone material used in this study is approximately 28,000 years old, as was shown by beta-carbon dating analysis. This was a surprising finding, as it demonstrated that the analyzed material was frozen for more than 10,000 years before the maximum of the last ice age. The research team used a computational approach to demonstrate that an unprecedented 50 perecent of the bone DNA was indeed mammoth DNA, while the remaining genetic material was shown to belong to microorganisms living the tundra soil.
The study indicates that any organism that has been trapped in frozen ice or a permafrost environment for up to one million years will be an open book to the researchers. The search is now on for more specimens from plant, animal, and man that can illuminate the route evolution took on its way from the past to the present, and that can perhaps clarify the role environmental changes did play in the extinction of an entire species.
Initial funding for this study was provided by McMaster University, The Natural Sciences and Engineering Research Council of Canada, and Penn State University. The researchers now are seeking funding for the completion of the mammoth genome sequence and hope to conduct detailed comparative studies that include the genomes of African and Indian elephants.
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Long-sought structure of powerful anticancer natural product
…solved by integrated approach. A collaborative effort by the research groups of Professor Haruhiko Fuwa from Chuo University and Professor Masashi Tsuda from Kochi University has culminated in the structure…
Making a difference: Efficient water harvesting from air possible
Copolymer solution uses water-loving differential to induce desorption at lower temperatures. Harvesting water from the air and decreasing humidity are crucial to realizing a more comfortable life for humanity. Water-adsorption…
In major materials breakthrough
UVA team solves a nearly 200-year-old challenge in polymers. UVA researchers defy materials science rules with molecules that release stored length to decouple stiffness and stretchability. Researchers at the University…