Manchester develops wireless ‘wear and tear’ sensor
Sensors which are able to predict when mechanical parts in machinery and transport will breakdown before they actually do could be introduced by 2010, slashing maintenance costs across the manufacturing, automotive and plant machinery industries.
Scientists at The University of Manchester are to develop a new type of wireless sensor which will be able to remotely monitor mechanical parts and systems. The aim is to produce a sensor which can be seamlessly fitted inside gearboxes, motors, diesel engines, wheel bearings and door mechanisms, in which faults can occur.
Once fitted, the sensors would enable the ‘health’ of the parts to be remotely monitored by computers which would then use the data to predict when parts require maintenance or need replacing – before they fail.
Dr Andrew Starr, who will lead the Manchester side of the Europe-wide project, said: “By monitoring the condition of major parts we will be able to predict when they require maintenance and when they need replacing before they fail. This will dramatically reduce the delay and cost caused by impromptu break downs, and we hope it will also lead to a much more efficient service for customers.
He added: “In theory, we could get breakdowns down to zero with this technology.”
Manchester will develop a multi-measureand MEMS sensor which will measure a range of selected parameters (e.g. vibration, temperature, pressure) for condition monitoring applications. Another application will be inside lubricated machinery. In this instance, sensors would measure concentrations of metallic elements created through ‘wear and tear’ from which the life-span of the part could be calculated.
The sensor will be developed as part of a £4.1m initiative funded by the European Union under Framework 6, known as DYNAMITE (Dynamic Decisions in Maintenance), aimed at advancing the capabilities of European industry in the field of e-maintenance and condition monitoring. The project will focus on applications in plant machinery, manufacturing and transport.
The aim of DYNAMITE is to deliver a blend of leading-edge communications and sensor technologies to create a prototype system for the European market. The system is planned for completion in 2008.
Media Contact
More Information:
http://www.manchester.ac.ukAll latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
New model of neuronal circuit provides insight on eye movement
Working with week-old zebrafish larva, researchers at Weill Cornell Medicine and colleagues decoded how the connections formed by a network of neurons in the brainstem guide the fishes’ gaze. The…
Innovative protocol maps NMDA receptors in Alzheimer’s-Affected brains
Researchers from the Institute for Neurosciences (IN), a joint center of the Miguel Hernández University of Elche (UMH) and the Spanish National Research Council (CSIC), who are also part of…
New insights into sleep
…uncover key mechanisms related to cognitive function. Discovery suggests broad implications for giving brain a boost. While it’s well known that sleep enhances cognitive performance, the underlying neural mechanisms, particularly…