Defect and pore concentration simulation in an amorphous alloy of boron and cobalt

Simulation of local microstructure of amorphous alloys

Modern engineering places increasing demands on components. It is the job of the designers and materials scientists to create components that are up to the challenge.

Many new materials and components can be time consuming and expensive to manufacture with costs escalating if samples or trials prove unsuitable. Computer modelling goes some way to minimizing the developments costs and fast tracking development.

Some of the more sophisticated computer modelling programs are able to model the material and its structure before test samples even are produced. This includes the location of flaws and prediction of lifetime and failure.

In the case of amorphous materials, pores and clusters of pores can radically change the properties of the material when compared to a solid crystal. In this paper by Pham Khac Hung, Do Minh Nghiep, Hoang Van Hue and Nguyen Van Hong from Hanoi University of Technology, they were able to simulate the microstructure in the amorphous system CoxB1-x to provide information on pore clusters, localized structural characteristics and pore concentration.

Their calculated results corresponded with experimental results and found the number of pores was largely influenced by changes in boron concentration. The calculation of angle, pore number, atom number and free volume distributions reveals that increasing the boron concentration in the system disorders the structure of amorphous alloys. It also showed that there were more pores found around cobalt atoms than around boron atoms.

Media Contact

Dr. Ian Birkby EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…