Superalloy joining for extreme applications using Transient Liquid Phase diffusion bonding
The high mechanical strength and corrosion resistant nature of oxide dispersion strengthened (ODS) superalloys puts them in demand for use in extreme applications such as turbine engines and heat exchangers. Much of their suitability for these applications is derived from their carefully tailored microstructures. Unfortunately some joining methods, like welding, can alter the desirable microstructures and therefore the properties of the superalloy.
Transient Liquid Phase (TLP) diffusion bonding has emerged as a potential joining technique for advanced alloys when fusion welding and other solid state processes are not suitable. The process involves using an interlayer between the surfaces to be bonded. The interlayer contains materials that lower the melting point. At the bonding temperature, which is below the melting temperature of the parent alloy, the interlayer melts and a joint forms by isothermal solidification.
In the present work, R.K. Saka and T.I. Khan of the University of Calgary, used Transient Liquid Phase diffusion bonding to join Inconel MA 758 using nickel based interlayers.
The researchers investigated the effect of interlayer composition, bonding time and the use of post-bond heat treatment on microstructural developments at the joint region. They found that the hold time at the bonding temperature affected the rate of isothermal solidification during the TLP bonding process. They also found that altering the hold time could produce a joint free from deleterious centerline eutectic structures. The formation of intermetallic precipitates adjacent to the joint interface were observed for bonds made using all four interlayers and a proper selection of interlayer composition was shown to reduce precipitation. The use of post-bond heat treatment was also found to help homogenization of the joint microstructure.
Media Contact
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
An Endless Loop: How Some Bacteria Evolve Along With the Seasons
The longest natural metagenome time series ever collected, with microbes, reveals a startling evolutionary pattern on repeat. A Microbial “Groundhog Year” in Lake Mendota Like Bill Murray in the movie…
Witness Groundbreaking Research on Achilles Tendon Recovery
Achilles tendon injuries are common but challenging to monitor during recovery due to the limitations of current imaging techniques. Researchers, led by Associate Professor Zeng Nan from the International Graduate…
Why Prevention Is Better Than Cure—A Novel Approach to Infectious Disease Outbreaks
Researchers have come up with a new way to identify more infectious variants of viruses or bacteria that start spreading in humans – including those causing flu, COVID, whooping cough…