Ever-happy mice may hold key to new treatment of depression
“Depression is a devastating illness, which affects around 10% of people at some point in their life,” says Dr. Guy Debonnel an MUHC psychiatrist, professor in the Department of Psychiatry at McGill University, and principal author of the new research. “Current medications for clinical depression are ineffective for a third of patients, which is why the development of alternate treatments is so important.”
Mice without the TREK-1 gene ('knock-out' mice) were created and bred in collaboration with Dr. Michel Lazdunski, co-author of the research, in his laboratory at the University of Nice, France. “These 'knock-out' mice were then tested using separate behavioral, electrophysiological and biochemical measures known to gauge 'depression' in animals,” says Dr. Debonnel. “The results really surprised us; our 'knock-out' mice acted as if they had been treated with antidepressants for at least three weeks.”
This research represents the first time depression has been eliminated through genetic alteration of an organism. “The discovery of a link between TREK-1 and depression could ultimately lead to the development of a new generation of antidepressant drugs,” noted Dr. Debonnel.
According to Health Canada and Statistics Canada, approximately 8% of Canadians will suffer from depression at some point in their lifetime. Around 5% of Canadians seek medical advice for depression each year; a figure that has almost doubled in the past decade. Figures in the U.S. are comparable, with approximately 18.8 million American adults (about 9.5% of the population) suffering depression during their life.
Funding for this research was provided by the CNRS (Centre National de la Recherche Scientifique) and the Canadian Institutes for Health Research (CIHR).
The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1000 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.
About the McGill University Health Centre (MUHC) is a comprehensive academic health institution with an international reputation for excellence in clinical programs, research and teaching. The MUHC is a merger of five teaching hospitals affiliated with the Faculty of Medicine at McGill University–the Montreal Children's, Montreal General, Royal Victoria, and Montreal Neurological Hospitals, as well as the Montreal Chest Institute. Building on the tradition of medical leadership of the founding hospitals, the goal of the MUHC is to provide patient care based on the most advanced knowledge in the health care field, and to contribute to the development of new knowledge.
Media Contact
All latest news from the category: Health and Medicine
This subject area encompasses research and studies in the field of human medicine.
Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…