Unique laboratory could make pavements more user-friendly

Research undertaken using PAMELA (Pedestrian Accessibility & Movement Environment Laboratory) is expected to have a positive impact on the lives of all users – which is particularly significant in view of the passing of the Disability Discrimination Act in April 2005.

The laboratory makes it possible, for the first time, to observe and understand how all the different factors at work in pedestrian environments can cause difficulties for people using them. By providing detailed insights into how pedestrians are affected by uneven surfaces and visual distractions, for instance, PAMELA will generate data that leads to improvements in the design of pavements, footways and concourses, and will enable new ideas and products to be tried out.

Nick Tyler, Chadwick Professor of Civil Engineering at University College London, has led the development of PAMELA, supported by funding from the Engineering and Physical Sciences Research Council. He will outline the laboratory’s capabilities at the BA Festival on 8th September.

PAMELA consists of three key elements, which enable different, realistic combinations of conditions and their impact on people to be studied in a closely controlled scientific environment:

•An 80m2 computer-controlled platform which can be altered to mimic the characteristics of different pedestrian environments, such as surface material, colour and texture, gradients, steps and obstacles.
•A lighting system that can mimic different daytime/night-time light conditions.
•A sound system that can create realistic ambient noise such as traffic movement, railway announcements etc.

As well as studying how accessible and user-friendly a pedestrian environment is for people with different capabilities, the laboratory can be used to pinpoint exactly how and why an environment may become difficult or confusing, e.g. a railway station subject to noises from different sources, strange lighting effects caused by shadows and arches, moving people and machines, changing floor surfaces and levels etc. Research of this kind could inform design decisions on issues such as surface types/colours/smoothness, slopes and lighting.

Similarly, the laboratory can be used to study changes in pedestrian capacity resulting from changes in the physical dimensions of pedestrian environments, or the need to step up, across or down from a bus or train to a platform, for example. This will help in the design of pedestrian spaces and transport interchanges.

“There’s enormous scope to improve the design of pedestrian environments so that people can move around them more efficiently, while minimising the risk of trips, falls and similar accidents,” says Professor Tyler. “PAMELA is the first laboratory of its kind and we’re keen to see organisations from all over the world make use of its pioneering facilities.

Media Contact

Natasha Richardson alfa

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Nerve cells of blind mice retain their visual function

Nerve cells in the retina were analysed at TU Wien (Vienna) using microelectrodes. They show astonishingly stable behavior – good news for retina implants. The retina is often referred to…

State-wide center for quantum science

Karlsruhe Institute of Technology joins IQST as a new partner. The mission of IQST is to further our understanding of nature and develop innovative technologies based on quantum science by…

Newly designed nanomaterial

…shows promise as antimicrobial agent. Rice scientists develop nanocrystals that kill bacteria under visible light. Newly developed halide perovskite nanocrystals (HPNCs) show potential as antimicrobial agents that are stable, effective…