New fertilizer SRM can help control heavy metal content

Modern multi-nutrient fertilizers produced for home and agricultural use are formulated from multiple sources to provide significant amount of nitrogen, phosphorus and potassium, the major plant nutrients, and lesser or even trace amounts of other nutrients needed by different crops, such as boron, calcium, iron and zinc.

Until relatively recently, fertilizers were tested and certified for their nutrient content, but little attention was paid to the possibility of heavy metal contaminants introduced by the mineral sources used to prepare the fertilizer. However, in response to incidents of heavy metal contamination of cropland, several states have enacted regulations in the past seven years that limit the amounts of some potentially hazardous non-nutritive elements in fertilizers. Several countries, including Japan, China, and Australia, and the European Union, also limit the amount of selected elements in fertilizers.

While fertilizer manufacturers and state regulatory authorities have needed to develop analytical methods to implement these regulations, until now there have been no certified reference materials available that they could use to validate the accuracy of their measurements. It can be difficult to measure accurately trace levels of some metals in a chemically complex mixture like fertilizer.

NIST's Standard Reference Material, SRM 695, “Trace Elements in Multi-Nutrient Fertilizer,” was developed in collaboration with members of the Association of American Plant Food Control Officials (AAPFCO) and The Fertilizer Institute (TFI) to help meet this need. SRM 695 is a typical multi-nutrient fertilizer certified for the content of both major elements and trace elements, including calcium, iron, magnesium, manganese, sodium, potassium, zinc, arsenic cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and vanadium. Additional reference values are provided for aluminum, boron, nitrogen, phosphorous and selenium.

Media Contact

Michael Baum EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Illustration of multiferroic heterostructures enabling energy-efficient MRAM with giant magnetoelectric effect.

Magnetic Memory Unlocked with Energy-Efficient MRAM

Researchers from Osaka University introduced an innovative technology to lower power consumption for modern memory devices. Stepping up the Memory Game: Overcoming the Limitations of Traditional RAM Osaka, Japan –…

Framework for automating RBAC compliance checks using process mining and policy validation tools.

Next-Level System Security: Smarter Access Control for Organizations

Cutting-Edge Framework for Enhancing System Security Researchers at the University of Electro-Communications have developed a groundbreaking framework for improving system security by analyzing business process logs. This framework focuses on…

Deep-sea sediment core highlighting microbial carbonate formation at methane seeps.

How Microbial Life Shapes Lime Formation in the Deep Ocean

Microorganisms are everywhere and have been influencing the Earth’s environment for over 3.5 billion years. Researchers from Germany, Austria and Taiwan have now deciphered the role they play in the…