Queen’s science discovery heralds new era in water repellent metals

Drs Graham Saunders and Steven Bell of Queen’s University School of Chemistry and Chemical Engineering, together with PhD student, Iain Larmour, have developed a very simple method for treating metals that results in extremely high hydrophobicity using readily available starting materials and standard laboratory equipment in a process that only takes a few minutes.

The significance of the discovery lies in the ease of fabrication and the flexibility of the method. Dr Saunders said, “There have been numerous attempts to emulate the extraordinary water repellency of lotus leaves, but very few synthetic surfaces can match these natural systems. Those that do are unsuitable for practical applications because they are difficult and costly to fabricate or can be applied only to a very limited number of materials. Our method produces robust surfaces displaying hydrophobicity that surpasses that of lotus leaves – ultrahydrophobicity. Furthermore the method is cheap and quick, and can be extended to a wide range of metals.”

It is the structure of lotus leaves – nanohairs on microbumps which are coated with a waxy substance – that causes the hydrophobicity and the Queen’s team’s discovery has successfully mimicked that surface structure. The process is simple. The objects to be treated are immersed in a metal-salt solution which coats them with a textured metal layer, thinner than a human hair, which resembles the structure of lotus leaves. The object is then dipped into a solution of a chemical surface-modifier, which covers the textured coating with a second, even thinner layer of water-repelling molecules. The resulting surface is so hydrophobic that water droplets deposited on the surface form almost perfect spheres and coated objects can be immersed for days but are found to be completely dry when they are pulled from the water.

The flexibility and simplicity of the approach means that the method can be applied to metal objects of any reasonable shape and size. Dr Bell said, “The team experimented with samples of various shapes and sizes and more complex metal objects, including a model of a pond skater made from copper. Pond skaters use superhydrophobic legs to walk on water, and our model, despite being 10x the mass of a pond skater of the same size, when treated, floated comfortably on water. Although this is a light-hearted example it does illustrate how readily our method can be applied.”

Future practical applications of this discovery are likely to include biomedical devices, liquid separation, and reducing turbulent flow in water-bearing pipes, among others.

Media Contact

Lisa Mitchell alfa

More Information:

http://www.qub.ac.uk

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…

Microscopic view of blood cells representing ASXL1 mutation research findings.

ASXL1 Mutation: The Hidden Trigger Behind Blood Cancers and Inflammation

Scientists show how a mutated gene harms red and white blood cells. LA JOLLA, CA—Scientists at La Jolla Institute for Immunology (LJI) have discovered how a mutated gene kicks off…