Invasive Grass May Impede Forest Regeneration

M. vimineum, commonly called Nepalese browntop or Japangrass, was first identified in 1919 near Knoxville, Tennessee, where it was inadvertently introduced in packing material for porcelain china. Since then, the grass has spread across the southern States, flourishing on floodplains and streamsides and displacing native vegetation.

“Microstegium can invade and persist in the low-light conditions of interior forests, making excellent use of short bursts of sunlight,” says Chris Oswalt. “It can also flourish in the full light conditions that follow many canopy disturbances.”

While working on a larger oak regeneration study at The Ames Plantation in southwest Tennessee, the researchers noticed a dramatic increase in Microstegium after silviculture treatments that opened the forest canopy. To test whether the grass would negatively impact the regeneration of native woody species, they conducted a separate set of studies nested within the silvicultural study with treatments that ranged from no disturbance to complete canopy removal.

After a season of monthly vegetation measures on a total of 720 plots, the researchers found that although Microstegium biomass did not differ significantly among silviculture treatments, there was a significant difference between treated and undisturbed plots, with Microstegium biomass 2 to 10 times greater in disturbed plots. They also found that the species richness of native woody species on the disturbed plots declined as the percent of Microstegium cover increased.

“We found that when exposed to sunlight, Microstegium can grow rapidly, often forming thick organic mats on the forest floor that directly impede the regeneration of native woody species by blocking sunlight, and indirectly by blocking seeds from reaching the soil in order to germinate,” says Chris Oswalt. “This grass, which can be easily overlooked in the understory, should be given more attention by both researchers and land managers.”

Funding and support for the study was provided by the University of Tennessee Department of Forestry, Wildlife and Fisheries, where Chris Oswalt is a Ph.D. candidate, the Southern Research Station and The Hobart Ames Foundation.

The full text of the article is available at: http://www.srs.fs.usda.gov/pubs/26860

Media Contact

Chris Oswalt EurekAlert!

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Chang’e-6 farside basalts reveal a reinforced lunar dynamo

The evolution of the lunar dynamo is crucial for understanding the Moon’s deep interior structure, thermal history, and surface environment. A recent study by Chinese scientists conducted paleomagnetic analyses on…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…

Machine learning accelerates catalyst discovery

Conceptual blueprint to analyze experimental catalyst data. Machine learning (ML) models have recently become popular in the field of heterogeneous catalyst design. The inherent complexity of the interactions between catalyst…