Improving nitrogen use efficiency lessens environmental impact

Most agricultural crops require large quantities of nitrate-rich fertilizer to realize optimal yields. The dilemma for growers is finding ways to balance the amount of nitrogen needed for production while minimizing potentially harmful nitrates that can leach into ground and surface waters.

Increased interest in environmentally beneficial “low-input” approaches is challenging researchers to identify genotypes that have a characteristic called “high nutrient use efficiency”, or NUE. Using vegetable types with high NUE could help growers lessen environmental impacts while maintaining high crop yields. A new study reported on improved NUE traits that resulted from grafting melon plants onto commercial rootstocks.

Scientist Giuseppe Colla from the University of Tuscia and colleagues published the research in HortScience.The researchers evaluated a “rapid and economical” methodology for screening melon rootstocks for NUE using two experiments. In the first experiment melon plants, either ungrafted or grafted onto four commercial rootstocks grown in hydroponics, were compared. The second experiment was designed to confirm whether the use of a selected rootstock with high NUE could improve crop performance and NUE of grafted melon plants under field conditions.

The researchers observed that NUE traits were improved by grafting melon plants onto commercial rootstocks; grafted plants needed less nitrate in the nutrient solution to reach half maximum shoot dry weight. “In addition, the higher nitrate reductase activity of grafted plants under low nitrate conditions confirms that certain rootstocks have the potential to improve the NUE of grafted plants”, they noted. In the second experiment, carried out under open field conditions, increasing the fertilization rates increased the total and marketable yields of melon plants, while decreasing NUE. When averaged over nitrogen levels, the marketable yield, NUE, and N uptake efficiency were higher by 9%, 11.8%, and 16.3%, respectively, in grafted plants than in ungrafted plants.

“We found that the use of melon grafted on selected rootstock represents a potential strategy for increasing yield and NUE and coping with soil fertility problems under low-input conditions”, the authors concluded.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/4/559

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Media Contact

Michael W. Neff EurekAlert!

More Information:

http://www.ashs.org

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…