Slowing insect resistance to genetically modified crops

Genetically modified Bt crops are now widely used in the USA.

These crops contain genes from bacteria that make them toxic to some insect pests. A central concern in regulating these genetically modified crops is the risk of insects evolving resistance to the Bt toxins.

To reduce this risk, the “high dose/refuge” strategy is now being used, in which non-Bt fields (refuges for insect pests) are planted near Bt fields (where there is high dose of toxin).

In the November issue of Ecology Letters, Ives and Andow use mathematical theory to explain how the high dose/refuge strategy works. This analysis leads to several unexpected results. For example, for some Bt crops and some pests, spraying insecticides in refuges should not severely compromise the value of refuges.

This makes the high dose/refuge strategy more practical by allowing farmers to protect their crops in refuges. The new theory could lead to new resistance management strategies.

Media Contact

Michael Hochberg EurekAlert!

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…