Popularizing precision agriculture
Technology is bringing precision agriculture one-step closer to widespread use
USDA-Agricultural Research Service scientists at the George E. Brown, Jr. Salinity Laboratory, Riverside, California, have developed general guidelines for soil mapping using mobile equipment. This advanced technology is valuable for looking at changes in soil quality over time; including the presence of pollutants such as salts, pesticides, and fertilizers; and for use in precision agriculture to determine areas that are to be managed to maximize yield, minimize environmental impacts, and optimize the use of resources.
Soil is a very diverse media, which can vary from one point to the next in its chemical and physical makeup. Many of these soil properties influence crop yield and can cause yield variations within fields. These soil properties also influence how pollutants move through soil and get into the groundwater or runoff into lakes and streams.
One useful means of mapping these changes is using mobile equipment to measure several soil properties simultaneously. In order to determine where to take the optimum number of soil samples that will characterize the patterns in soil properties within a field, information is first obtained through the use of a global positioning system (GPS). Using statistical software developed by Scott Lesch of the Salinity Laboratory, maps of soil properties are then created by a geographic information system (GIS). These maps are used to guide management decisions for precision agriculture.
All of the steps and techniques are outlined in an article appearing in the May-June issue of Agronomy Journal. The guidelines were originally presented in the Soil Electrical Conductivity in Precision Agriculture Symposium at the 2000 Annual Meetings of the American Society of Agronomy-Crop Science Society of America-Soil Science Society of America.
“These guidelines provide scientists with a standardized means of conducting a soil survey for characterizing the soil chemical and physical properties that cause within-field variations in crop yield and that cause variations in the patterns of water and chemical movement. This is a tool that makes a significant step toward bringing precision agriculture from a scientific concept to a reality,” said Dennis Corwin, the projects lead scientist.
Rapidly developing information technology is providing scientists with the tools to deal with the complexities of soil-water-plant systems. In the past, these complexities have been so overwhelming that they hampered the progress of precision agriculture. The authors of the survey guidelines are confident that current and future research efforts are moving precision agriculture from a predominantly research concept to a day within the next one to two decades where precision agriculture will be the norm for agricultural operations.
Agronomy Journal, http://agron.scijournals.org is a peer-reviewed, international journal of agriculture and natural resource sciences published six times a year by the American Society of Agronomy (ASA). Agronomy Journal contains research papers on all aspects of crop and soil science including agroclimatology and agronomic modeling, military land use and management, extension education, environmental quality, international agronomy, agricultural research station management, and integrated agricultural systems.
The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.
Media Contact
All latest news from the category: Agricultural and Forestry Science
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…