Could seaweed clean up DDT?

Adding small amounts of seaweed to contaminated soil could prove to be a natural and effective way of breaking down the toxic pesticide DDT, according to new research in the Journal of Chemical Technology and Biotechnology. A British biologist, Ian Singleton, worked with colleagues in Australia and Thailand to find the right formula to use. Too much seaweed hindered biodegradation, but the most effective mix – 0.5% seaweed added to waterlogged soil – managed to remove 80% of the DDT present over six weeks, lowering the levels of DDT enough to pass Australian Environment Protection Authority criteria.

Why it is necessary

Although DDT is banned in most of the industrial world, it is one of the most effective anti-mosquito agents available. Twenty five countries, including South Africa, still use it in the fight against malaria, despite strong opposition from environmental groups. If DDT could be more quickly broken down after use, the overall health benefits to countries with big malaria problems could be enormous.

Why it works

The initial breakdown of DDT depends on particular microbes that function best anaerobically (without oxygen). The researchers used waterlogged soil to encourage the anaerobic microbes. Seaweed is a good source of sodium, which in low concentrations “significantly enhances” the microbes’ breakdown of DDT. Sodium disperses soil, thus exposing DDT to microbes; it also affects the amount of dissolved organic carbon in the soil, which in turn makes a difference to the way organisms access the contaminants. When too much seaweed is used, the dissolved carbon and excess sodium gets in the way of the process.

The authors suggest that the seaweed method “has potential” in accelerating DDT clean-up: “it would work best in small areas where DDT has been accidentally spilled or added to soil rather than being applied on a large scale, as the process has to be controlled and monitored.”

Media Contact

Rosamund Snow alfa

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…