Sprinklers shown effective in slowing dorm fires

Photo of a NIST experiment in a dorm day room without sprinklers 3 minutes and 47 seconds after a fire was ignited.

An automatic sprinkler system significantly increases a person’s chances of surviving a dormitory fire, according to a report issued recently by the National Institute of Standards and Technology (NIST).


Three NIST experiments,* supported by a U.S. Fire Administration (USFA) initiative for fire safety in college housing, compared the hazards of fires in smoke detector-equipped dormitories with and without fire sprinklers in the room of fire origin. Researchers started fires in a day room or lounge area open to the corridor of a dormitory. They used the temperature of 120 degrees C (248 degrees F) as the cutoff mark for human survival. For comparison, the temperature of boiling water is 100 degrees C.

In two experiments without sprinklers, potentially fatal temperatures exceeding 120 degrees C as well as toxic gases reached a remote corridor 22.9 meters (75 feet) away within three minutes and completely spread throughout the corridor within another three minutes. In an experiment with sprinklers, temperatures at the 1.5 meter (five feet) level and below in the room where the fire began never exceeded 120 degrees C. No significant increase in heat was measured in the corridor during the experiment, allowing adequate time for residents to escape.

NIST conducted the experiments at a barracks donated by the Myrtle Beach Air Force Base Redevelopment Authority in Myrtle Beach, S.C. The USFA incorporated footage of NIST sprinkler tests into a fire safety video for college administrators and students.

Media Contact

John Blair EurekAlert!

More Information:

http://www.nist.gov

All latest news from the category: Architecture and Construction

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…