See what you’re spewing as you speed along
In future drivers may only have to glance at the dashboard to see the pollution spewing out of their vehicle’s exhausts.
A team from The University of Manchester has constructed a laser measuring device capable of recording levels of carbon dioxide, carbon monoxide and methane from directly inside an exhaust.
Once optimised, the process could be incorporated into onboard diagnostic systems that would monitor emissions as vehicles drive along – and potentially help people reduce their emissions by adjusting their driving style.
Reporting in the Optical Society of America’s journal Applied Optics, academics claim this approach is faster and more sensitive than the extractive techniques normally used to monitor emissions.
In an MOT test, for example, exhaust emissions are extracted into a box while the engine is idling and the gases present are then measured.
The University of Manchester team employed a device known as a ‘near-IR diode laser sensor’ to measure the variation in gas concentration during changes in the operating conditions of a Rover engine, such as increasing and decreasing the throttle, adjusting the air to fuel ratio, and start-up.
“This is the first instance of this type of near-IR diode laser sensor being used directly in the exhaust of a static internal combustion engine to measure emissions,” said Dr Philip Martin, one of the paper’s authors.
The team say the components for the device are readily available and the near-IR technology allows highly accurate readings to be taken and also cuts out interference.
In the studies reported in Applied Optics, the near-IR device used two diode lasers operating at different frequencies; one detecting carbon monoxide and carbon dioxide and the other detecting methane.
The team measured the emissions produced by a Rover K-series car engine mounted on a test bed – but they have also taken the process outside the laboratory and measured exhaust emissions in passing vehicles.
“Components handling the high sensitivity and robustness required to apply this approach in the real world are only now becoming available,” added Dr Martin. “We have already constructed a battery-powered roadside unit using the same technology, employing rugged and robust telecommunications components.”
The next steps will be to fully quantify the technique and add additional lasers for other key emissions such as nitrogen oxide, nitrogen dioxide and specific hydrocarbons.
Dr Martin, who is a co-founder of University spin-out company TDL Sensors, says the technology could also potentially be used in roadside congestion charging systems, with less polluting vehicles being charged less.
Media Contact
More Information:
http://www.manchester.ac.ukAll latest news from the category: Automotive Engineering
Automotive Engineering highlights issues related to automobile manufacturing – including vehicle parts and accessories – and the environmental impact and safety of automotive products, production facilities and manufacturing processes.
innovations-report offers stimulating reports and articles on a variety of topics ranging from automobile fuel cells, hybrid technologies, energy saving vehicles and carbon particle filters to engine and brake technologies, driving safety and assistance systems.
Newest articles
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…
ASXL1 Mutation: The Hidden Trigger Behind Blood Cancers and Inflammation
Scientists show how a mutated gene harms red and white blood cells. LA JOLLA, CA—Scientists at La Jolla Institute for Immunology (LJI) have discovered how a mutated gene kicks off…