Bernstein Award 2011: 1.25 million euros for brain researcher Henning Sprekeler
The Bernstein Award 2011 goes to Dr. Henning Sprekeler, scientist at Humboldt-Universität zu Berlin (HU). He was able to convince an international jury through his scientific achievements and a sophisticated research approach.
The German Federal Ministry for Education and Research (BMBF) presents the Bernstein Award for Computational Neuroscience for the sixth time. The award ceremony takes place on October 4, 2011, at the annual meeting of the Bernstein Network Computational Neuroscience in Freiburg. The award provides ideal conditions for outstanding young scientists to establish their own research group at a German research institution.
Henning Sprekeler investigates how the brain on the one hand maintains stable activity, such as memories, and on the other hand can change through learning processes. Each nerve cell in our brain is connected with thousands of other nerve cells. Such a network consists not only of cells that excite others, but also of inhibitory ones. The activity of inhibitory and excitatory nerve cells must always be balanced. Disturbances of this balance are thought to play an important role in diseases such as epilepsy and schizophrenia. At the same time, the brain must be able to change through learning. Recently, Sprekeler presented, in collaboration with colleagues, a model that allows an ongoing balance between activation and inhibition within complex networks. It became apparent that this balancing in turn influences the learning process itself – how exactly is still unknown.
With his approach, Sprekeler combines two major research areas of neuroscience, learning and the model of balanced neuronal networks. “I want to contribute to a future understanding of how complex networks like the brain learn,” declares the awardee. In addition, he is interested in how these learning processes can be reduced to simple principles that describe the information processing of sensory stimuli in the brain.
Henning Sprekeler studied physics in Freiburg and Berlin. In his doctoral thesis, under the supervision of Professor Laurenz Wiskott, he could follow his growing interest in theoretical questions of biology. During his two-year research stay from 2008 on in the laboratory of Professor Wulfram Gerstner at the Brain Mind Institute at École Polytechnique Fédérale de Lausanne, Switzerland, the theoretically-oriented scientist gathered valuable experience in working with experimental researchers. In 2011, he returned to the Institute for Theoretical Biology at the Humboldt-Universität zu Berlin. There, he plans a series of collaborations with other members of the Bernstein Network.
The Bernstein Award is part of the Bernstein Network Computational Neuroscience (NNCN), launched by the BMBF in 2004. This network has been established to bundle, link and develop the capacities in the new research discipline of computational neuroscience. It is currently funded with a total of about 156 million euros. The network is named after the German physiologist Julius Bernstein (1835-1917).
Following the award ceremony, the awardee and 14 further scientists will be available for a press conference and individual interviews. Further information can be found at http://www.bccn-2011.uni-freiburg.de/presse (in German). After registration with johannes.faber@bcos.uni-freiburg.de, interested journalists will receive a corresponding press kit.
For further information please contact:
Dr. Henning Sprekeler
h.sprekeler@biologie.hu-berlin.de
Institute for Theoretical Biology
Humboldt-Universität zu Berlin
Invalidenstr. 43
D-10115 Berlin
Tel.: +49 30 2093 8630
Media Contact
All latest news from the category: Awards Funding
Newest articles
Targeted Printing
Single-cell technology… Bright prospects for personalized medicine: Experts from the Fraunhofer Institute for Microengineering and Microsystems IMM harness their know-how in microfluidics and single-cell technologies to print organ structures. They…
Cobalt-copper tandem converts carbon dioxide to ethanol
Positioning cobalt and copper in close proximity on an electrode facilitates selective conversion of the greenhouse gas CO₂ to ethanol / Prime example of sustainable chemical research. The continuing release…
How To Replace PFAS
Hardly any other chemical substance can compete with PFAS, due to their unique properties. That explains why it is so hard to find a replacement for these toxic “forever chemicals”,…