New STN Breaks Ground with Markush Structure Search and Enhanced Content for IP Exploration
Chemical Abstracts Service (CAS) and FIZ Karlsruhe are delighted to reveal the latest innovations for Intellectual Property (IP) professionals. New STN, a web-based search solution, offers access to essential, curated content in an intuitive interface designed for professional IP searching. Highlights of this most recent release include Markush structure search, additional databases, more export formats and numerous workflow and interface enhancements.
As the number of chemical structures disclosed in patents rapidly increases, it is imperative that IP professionals have the right tools for searching this information efficiently and reliably. The latest release of new STN introduces Markush structure search with delivery of MARPAT® from CAS. Combined with CAS REGISTRY℠ and Derwent Chemical Resource (DCR), new STN provides unsurpassed coverage of generic and exemplified chemical structures.
“Markush search is a necessary feature for anyone searching chemical patents,” said Matthew McBride, Manager, Science IP. “With new STN, I can simultaneously search a single chemical structure across key substance databases, saving time and ensuring my confidence in the results.”
In addition to Markush search capabilities, the latest release includes highly requested engineering, petroleum and energy databases COMPENDEX, INSPEC®, TULSA, ENCOMPLIT and ENCOMPPAT, as well as ReaxysFile™ for chemical substance information and associated references for patent-related searching. The Cooperative Patent Classification (CPC) and International Patent Classification (IPC) thesauri are also available to help users more easily incorporate classification codes into their search strategies.
“Now with 30 databases covering a broad spectrum of science and technology, IP professionals in many disciplines can take advantage of the robust capabilities of the new platform to transform the way they conduct intellectual property searches,” said Dr. Rainer Stuike-Prill, vice president marketing and sales at FIZ Karlsruhe.
The latest release demonstrates the continuing importance of customer feedback in extending functionality and enhancing operational efficiency. An updated structure editor allows searchers to model structures from CAS Registry Numbers®, and new single-click controls simplify cross-file searching between databases. The latest release also supports exporting search results in XML and BizInt file formats, enabling searchers to more flexibly share, analyze and report search results.
“New STN delivers the high-quality information and search power organizations around the world need to protect their valuable intellectual property,” said Christine McCue, CAS vice president marketing. “With this release, we are excited to offer unique capabilities and enhancements, like Markush structure search and new export options that make intellectual property more discoverable and help our customers derive the insight and intelligence that drives the success of their businesses.”
About STN
The choice of patent experts, only STN® offers access to trusted scientific and technical information including the authoritative chemistry content from CAS and patent content from Thomson Reuters’ Derwent World Patents Index®. Intellectual property professionals and patent examiners at the world’s major patent offices and research organizations rely on STN for their information needs. STN is operated jointly by CAS and FIZ Karlsruhe worldwide.
About CAS
Chemical Abstracts Service (CAS), a division of the American Chemical Society, is the world's authority for chemical information and related solutions. Dedicated to the ACS vision of improving people's lives through the transforming power of chemistry, the CAS team of highly trained scientists finds, collects and organizes all publicly disclosed substance information, creating the world's most valuable collection of content that is vital to innovation worldwide. Scientific researchers and patent professionals around the world rely on a suite of research solutions from CAS that enable discovery and facilitate workflows.
About FIZ Karlsruhe
FIZ Karlsruhe – Leibniz Institute for Information Infrastructure (www.fiz-karlsruhe.de) is a not-for-profit limited liability company and the largest non-academic information infrastructure institution in Germany. As such, its public mission is to develop and provide products and services for an information infrastructure to science, research, and industry. FIZ Karlsruhe strives to strengthen the transfer of knowledge in Germany and abroad and to support the promotion of innovation. FIZ Karlsruhe is a member of the Leibniz Association, which comprises almost 90 institutions involved in research activities and/or the development of scientific infrastructure.
Additional Information:
FIZ Karlsruhe – Leibniz Institute for Information Infrastructure
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Phone: +49 7247 808-555, Fax: +49 7247 808-259 , E-mail: helpdesk(at)fiz-karlsruhe.de
Press Contact:
FIZ Karlsruhe, Rüdiger Mack (Marketing Communications)
Phone: +49 7247 808-513
E-mail: ruediger.mack(at)fiz-karlsruhe.de
Media Contact
All latest news from the category: Business and Finance
This area provides up-to-date and interesting developments from the world of business, economics and finance.
A wealth of information is available on topics ranging from stock markets, consumer climate, labor market policies, bond markets, foreign trade and interest rate trends to stock exchange news and economic forecasts.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…