NSF Releases New Report from Advisory Committee for Cyberinfrastructure
Report envisions a future cyberinfrastructure that will “radically empower” the science and engineering community
The critical needs of science and rapid progress in information technology are converging to provide a unique opportunity to create and apply a sustained cyberinfrastructure that will “radically empower” scientific and engineering research and allied education, according to the National Science Foundation (NSF)’s Advisory Committee for Cyberinfrastructure. The committee details its recommendations in a report, released today, entitled Revolutionizing Science and Engineering through Cyberinfrastructure.
Like the physical infrastructure of roads, bridges, power grids, telephone lines, and water systems that support modern society, “cyberinfrastructure” refers to the distributed computer, information and communication technologies combined with the personnel and integrating components that provide a long-term platform to empower the modern scientific research endeavor.
Cyberinfrastructure is “essential, not optional, to the aspirations of research communities.” For scientists and engineers, the report states, cyberinfrastructure has the potential to “revolutionize what they can do, how they do it, and who participates.” The seeds of this revolution are seen in community-driven efforts, supported by NSF and other agencies, such as the Network for Earthquake Engineering Simulations (NEES), the Grid Physics Network (GriPhyN) and the National Virtual Observatory (NVO).
“We’ve clearly documented extensive grass-roots activity in the scientific and engineering research community to create and use cyberinfrastructure to empower the next wave of discovery,” said Dan Atkins, chair of the advisory committee and professor in the University of Michigan School of Information and the Department of Electrical Engineering and Computer Science. “NSF has been a catalyst for creating the conditions for a nascent cyberinfrastructure-based revolution. We’re at a new threshold where technology allows people, information, computational tools, and research instruments to be connected on a global scale.”
While identifying the opportunities, the committee warned that the cyberinfrastructure that is needed cannot be created today with off-the-shelf technology. As a result, they called for increased fundamental research in computer science and engineering.
In addition to NSF’s support for projects such as NEES, GriPhyN and NVO, the report calls out NSF’s leadership in the Partnerships for Advanced Computational Infrastructure (PACI) program, the TeraGrid effort, the NSF Middleware Initiative (NMI), the Digital Libraries Initiative and the Information Technology Research program as providing a solid foundation for the future cyberinfrastructure.
Its unique breadth of scientific scope and prior investments position NSF to lead an interagency program to develop an advanced cyberinfrastructure for the nation, according to the report. To reach critical mass, an advanced cyberinfrastructure activity would require interagency partnerships as well as collaboration between the physical and life sciences, computer science, and the social sciences.
“On behalf of NSF, I want to extend a strong thanks to the Advisory Committee for Cyberinfrastructure for the excellent job they have done in highlighting the importance of cyberinfrastructure to all of science and engineering research and education,” said Peter Freeman, NSF Assistant Director for Computer and Information Science and Engineering and NSF’s coordinator for cyberinfrastructure. “The extensive efforts they have made in bringing together in one place the ideas and visions of all segments of the science and engineering community will be extremely useful to NSF as we move forward to exploit the opportunities they have identified.”
The report recommends that a cyberinfrastructure program encompass fundamental cyberinfrastructure research, research on science and engineering applications of the cyberinfrastructure, development of production-quality software, and equipment and operations.
The report emphasizes the importance of acting quickly and the risks of failing to do so. The risks include lack of coordination, which could leave key data in irreconcilable formats; long-term failures to archive and curate data collected at great expense; and artificial barriers between disciplines built from incompatible tools and structures.
The opportunity is evidenced by both progress from developments in information technology and the mushrooming of cyberinfrastructure projects for specific fields, initiated by scientists in those fields. The NSF has a once-in-a-generation opportunity,” according to the committee, to lead the scientific and engineering community in the coordinated development and expansive use of cyberinfrastructure.
For more on the NSF Advisory Committee for Cyberinfrastructure: http://www.cise.nsf.gov/evnt/blu_rbbn/
NSF Cyberinfrastructure Coordinator: Peter Freeman, 703-2928900, pfreeman@nsf.gov
Advisory Committee Chair: Dan Atkins, 734-647-7312, atkins@umich.edu
Media Contact
All latest news from the category: Communications Media
Engineering and research-driven innovations in the field of communications are addressed here, in addition to business developments in the field of media-wide communications.
innovations-report offers informative reports and articles related to interactive media, media management, digital television, E-business, online advertising and information and communications technologies.
Newest articles
Novel catalyst for charge separation in photocatalytic water splitting
A research team led by Prof. JIANG Hailong, Prof. LUO Yi, and Prof. JIANG Jun from the University of Science and Technology of China (USTC) discovered a metal-organic framework (MOF)…
Finding a missing piece for neurodegenerative disease research
Research led by the University of Michigan has provided compelling evidence that could solve a fundamental mystery in the makeup of fibrils that play a role in Alzheimer’s, Parkinson’s and…
BESSY II: New procedure for better thermoplastics
Thermoplastic blends, produced by a new process, have better resilience. Now, experiments at the IRIS beamline show, why: nanocrystalline layers increase their performance. Bio-based thermoplastics are produced from renewable organic…