From football conferences to food webs: U-M researcher uncovers patterns in complicated networks

The world is full of complicated networks that scientists would like to better understand—human social systems, for example, or food webs in nature. But discerning patterns of organization in such vast, complex systems is no easy task.

“The structure of those networks can tell you quite a lot about how the systems work, but they’re far too big to analyze by just putting dots on a piece of paper and drawing lines to connect them,” said Mark Newman, an assistant professor of physics and complex systems at the University of Michigan.

One challenge in making sense of a large network is finding clumps—or communities—of members that have something in common, such as Web pages that are all about the same topic, people that socialize together or animals that eat the same kind of food. Newman and collaborator Michelle Girvan, a postdoctoral fellow at the Santa Fe Institute in Santa Fe, New Mexico, have developed a new method for finding communities that reveals a lot about the structure of large, complex networks. Newman will discuss the method and its applications Feb. 15 at the annual meeting of the American Association for the Advancement of Science in Seattle.

“The way most people have approached the problem is to look for the clumps themselves—to look for things that are joined together strongly,” said Newman. “We decided to approach it from the other end,” by searching out and then eliminating the links that join clumps together. “When we remove those from the network, what we’re left with is the clumps.”

The researchers tested their method on several networks for which the structure was already known—college football conferences, for example. In college football, teams in the same conference face off more frequently than teams in different conferences. When inter-conference games do occur, they’re more likely to be between teams that are geographically close together than between teams that are far apart. Plugging in information on frequency of games between pairs of teams in the 2000 regular season, Newman and Girvan tested their method to see if it could correctly sort the colleges into conferences. “There were a few cases where it made mistakes, but it got well over 90 percent of them right,” said Newman. “It gave us the structure we were expecting, so that was encouraging.”

Newman and Girvan—and other researchers who’ve learned about their work—have gone on to apply the technique to systems where the structure is not as well understood, looking at everything from networks of Spanish language web logs to communities of early jazz musicians to a food web of marine organisms living in Chesapeake Bay.

“Networks and other systems that we study are becoming increasingly large and complicated these days,” said Newman. “New methods like this help us to make sense of what we see and to understand better how things work.”

Media Contact

Nancy Ross-Flanigan EurekAlert!

All latest news from the category: Communications Media

Engineering and research-driven innovations in the field of communications are addressed here, in addition to business developments in the field of media-wide communications.

innovations-report offers informative reports and articles related to interactive media, media management, digital television, E-business, online advertising and information and communications technologies.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…