Landslide triggers megatsunami in narrow fjord

Overview of seismic stations on Greenland (black triangles), the location of the tsunami (red circle) and the nearest seismic station (red triangle), whose filtered signals are shown.
Credit: Angela Carillo Ponce et al. / CC BY

Seismologists measure tremors up to 5000 km away.

It was a monster wave that hit a fjord on Greenland’s east coast on 16 September 2023: In certain places, the traces of the flooding reached 200 metres high. Researchers led by Angela Carrillo Ponce from the German Research Centre for Geosciences (GFZ) have now evaluated the seismic signals from earthquake measuring stations worldwide and discovered another unusual event: Triggered by the megatsunami, a standing wave sloshed back and forth in the narrow bay of the uninhabited Dickson Fjord for more than a week. The international team published their work in the current issue of the scientific journal “The Seismic Records”.

Rockslide as triggering event

The tsunami was triggered by a large landslide. Earthquake measuring stations up to 5,000 kilometres away registered the shaking caused by the landslide as a short signal. However, there was also a very long-period (VLP) signal that was recorded by the seismometers for more than a week. Angela Carrillo Ponce, who works as a doctoral student in the “Physics of Earthquakes and Volcanoes” section of the GFZ, says: “The mere fact that the  VLP signal of a wave sloshing back and forth triggered by a landslide in a remote area of Greenland can be observed worldwide and for over a week is exciting. That’s why we in seismology have been most concerned with this signal.” Fortunately, the researcher adds, no people were harmed. Only a military base, which was without personnel at the time of the tsunami, was devastated.

Analysis of the seismic signals – shock waves that travel thousands of kilometers in the earth’s crust – showed that a so-called standing wave formed in the fjord after the landslide. Initially, the parts of the flank that fell into the water triggered a giant wave that spread through the entire fjord to the offshore island of Ella, more than 50 kilometres away. Near the point where the rockslide entered the fjord, the maximum height was more than 200 metres, along the coast an average of 60 meters. Parts of the wave apparently spilled back from the steep banks in the narrow fjord and a standing wave began to form, which undulated back and forth for more than a week. However, this wave measured only around 1 metre in height.

Standing wave persisted unusually long

Such standing waves and the resulting long-period signals are already known in research. Such VLP signals are normally associated with large break-offs from glacier edges. “In our case, we also registered a VLP signal”, says Angela Carrillo Ponce, “the unusual thing about it was the long duration”. What was particularly impressive was that the data from seismic stations in Germany, Alaska and other parts of North America were of very good quality for the analysis. A comparison with satellite images confirmed that the cause of the first seismic signals corresponded well with the strength and direction of the rockfall that triggered the megatsunami. In addition, the authors were able to model the slow decay and the dominant oscillation period of the VLP signals.

This gives the researchers hope that they will be able to detect and analyze other similar events from the past. It is obvious that the retreat of glaciers, which previously filled entire valleys, and the thawing of permafrost are leading to increased landslides. Climate change is accelerating the melting of glaciers and could therefore increase the risk of megatsunamis.

Journal: The Seismic Record
DOI: 10.1785/0320240013
Method of Research: Data/statistical analysis
Subject of Research: Not applicable
Article Title: The 16 September 2023 Greenland Megatsunami: Analysis and Modeling of the Source and a Week-Long, Monochromatic Seismic Signal
Article Publication Date: 8-Aug-2024
COI Statement: No conflict of interest declared

Media Contact

Josef Zens
GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre
josef.zens@gfz-potsdam.de
Office: 331 6264

www.gfz-potsdam.de

Media Contact

Josef Zens
GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…