New extremes in stratospheric water vapor

The NASA-ER2 high-altitude aircraft landing after a record-breaking flight.
Photo by Cameron Homeyer

A University of Oklahoma-led article published in Geophysical Research Letters highlights newly measured extremes recorded during the National Aeronautics and Space Administration Dynamics and Chemistry of the Summer Stratosphere field project.

“Extreme Altitudes of Stratospheric Hydration by Midlatitude Convection Observed During the DCOTSS Field Campaign,” led by OU School of Meteorology Interim Director and Associate Professor Cameron Homeyer, summarizes the extremes in measured stratospheric depth of hydration by convection recorded during the DCOTSS project as a whole, and then highlights a specific storm, a supercell that erupted on June 23, 2022. The storm in question lasted approximately five hours, produced six tornadoes, and instigated hail and wind reports.

The focus of the research is to determine how deep, how much and how frequently water in the stratosphere is being increased by thunderstorms. “We’re used to seeing the impacts in terms of hazardous weather that these storms produce, but some of the most impactful storms in terms of hazardous weather are also leaving a really big imprint on the climate system by enhancing water vapor in the stratosphere,” Homeyer said.

Increases in water vapor in the stratosphere contribute to climate warming and can contribute to the destruction of ozone. Improved understanding of increased stratospheric water vapor aids in the understanding of Earth’s climate system.

There is a significant need for purposeful research in this area. Measurements of the air impacted by thunderstorms and the stratosphere have been sporadic and often incidental for much of the past five decades, Homeyer said. Only in recent years have the efforts to deliberately sample environments for such measurements been made. The DCOTSS project is one such effort.

Researchers deployed for the project in the summer of 2021 and 2022 based primarily out of Salina, Kansas. NASA ER-2 high-altitude research aircraft were used to acquire measurements of convective plumes with the intention of determining their effects on the stratosphere. The aircraft were equipped with 12 instruments and the deployments resulted in up to 29 flights with research-quality data. Those flights repeatedly broke records for measuring stratospheric depth of hydration by convection on multiple flights.

The collected aircraft observations demonstrate that high-level thunderstorms do in fact enhance water vapor in the stratosphere at levels higher than previously understood.

Homeyer served as the project’s data manager and science investigation manager for theory, forecasting and flight planning. Other researchers participated from Texas A&M, the University of Miami, the Massachusetts Institute of Technology, Harvard, the University of Maryland Baltimore County, the National Center for Atmospheric Research, the University of Colorado’s Cooperative Institute for Research in Environmental Sciences, the National Oceanic Atmospheric Administration and NASA.

Learn more about the School of Meteorology at meteorology.ou.edu and about the DCOTSS project at dcotss.org.

Journal: Geophysical Research Letters
DOI: 10.1029/2023GL104914
Article Title: Extreme Altitudes of Stratospheric Hydration by Midlatitude Convection Observed During the DCOTSS Field Campaign
Article Publication Date: 26-Sep-2023

Media Contact

Chelsea Julian
University of Oklahoma
chelseajulian@ou.edu
Office: 405-325-5082

Media Contact

Chelsea Julian
University of Oklahoma

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Multiple Sclerosis: Early Warnings in the Immune System

LMU researchers demonstrate that certain immune cells already play an important role in the early stages of multiple sclerosis. The researchers compared the CD8 T cells of monozygotic twin pairs,…

Quantum communication: using microwaves to efficiently control diamond qubits

Major breakthrough for the development of diamond-based quantum computers. Quantum computers and quantum communication are pioneering technologies for data processing and transmission that is much faster and more secure than…

Logic with light

Introducing diffraction casting, optical-based parallel computing. Increasingly complex applications such as artificial intelligence require ever more powerful and power-hungry computers to run. Optical computing is a proposed solution to increase…

Partners & Sponsors