Antarctic ice loss speeds up, nearly matches Greenland loss

In a first-of-its-kind study, an international team led by Eric Rignot, professor of Earth system science at UCI and a scientist with NASA’s Jet Propulsion Laboratory, Pasadena, Calif., estimated changes in Antarctica’s ice mass between 1996 and 2006 and mapped patterns of ice loss on a glacier-by-glacier basis. They detected a sharp jump in Antarctica’s ice loss, from enough ice to raise global sea level by 0.3 millimeters (.01 inches) a year in 1996, to 0.5 millimeters (.02 inches) a year in 2006.

Rignot said the losses, which were primarily concentrated in West Antarctica’s Pine Island Bay sector and the northern tip of the Antarctic Peninsula, are caused by ongoing and past acceleration of glaciers into the sea. This is mostly a result of warmer ocean waters, which bathe the buttressing floating sections of glaciers, causing them to thin or collapse. “Changes in Antarctic glacier flow are having a significant, if not dominant, impact on the mass balance of the Antarctic ice sheet,” he said.

Results of the study are published in February’s issue of Nature Geoscience.

To infer the ice sheet’s mass, the team measured ice flowing out of Antarctica’s drainage basins over 85 percent of its coastline. They used 15 years of satellite radar data from the European Earth Remote Sensing-1 and -2, Canada’s Radarsat-1 and Japan’s Advanced Land Observing satellites to reveal the pattern of ice sheet motion toward the sea. These results were compared with estimates of snowfall accumulation in Antarctica’s interior derived from a regional atmospheric climate model spanning the past quarter century.

The team found that the net loss of ice mass from Antarctica increased from 112 (plus or minus 91) gigatonnes a year in 1996 to 196 (plus or minus 92) gigatonnes a year in 2006. A gigatonne is one billion metric tons, or more than 2.2 trillion pounds. These new results are about 20 percent higher over a comparable time frame than those of a NASA study of Antarctic mass balance last March that used data from the NASA/German Aerospace Center Gravity Recovery and Climate Experiment. This is within the margin of error for both techniques, each of which has its strengths and limitations.

Rignot says the increased contribution of Antarctica to global sea level rise indicated by the study warrants closer monitoring.

“Our new results emphasize the vital importance of continuing to monitor Antarctica using a variety of remote sensing techniques to determine how this trend will continue and, in particular, of conducting more frequent and systematic surveys of changes in glacier flow using satellite radar interferometry,” Rignot said. “Large uncertainties remain in predicting Antarctica’s future contribution to sea level rise. Ice sheets are responding faster to climate warming than anticipated.”

Rignot said scientists are now observing these climate-driven changes over a significant fraction of the West Antarctic Ice Sheet, and the extent of the glacier ice losses is expected to keep rising in the years to come. “Even in East Antarctica, where we find ice mass to be in near balance, ice loss is detected in its potentially unstable marine sectors, warranting closer study,” he said.

Other organizations participating in the NASA-funded study are Centro de Estudios Cientificos, Valdivia, Chile; University of Bristol, United Kingdom; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands; University of Missouri, Columbia, Mo.; and the Royal Netherlands Meteorological Institute, De Bilt, The Netherlands.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students, and nearly 2,000 faculty members. The third-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.6 billion. For more UCI news, visit www.today.uci.edu.

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit www.today.uci.edu/broadcast.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Media Contact

Jennifer Fitzenberger EurekAlert!

More Information:

http://www.uci.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…