<i>Homo heidelbergensis</i> bones even older

Arantxa Aranburu, doctor of the University of the Basque Country and lecturer of the Department of Geology, has proved that the bones of Homo heidelbergensis found in Sima de los Huesos, Atapuerca, are even older than thought.

In the gallery of Sima de los Huesos, Atapuerca, a speleothem was found during a stonecutting, over the bones of the ancestors of the Neanderthals, the Homo heidelbergensis. Speleohtem is a carbonate precipitate, that is, it is made of the same material as stalactites and stalagmites. However, in this case, instead of being column-shape, it is a layer-shape speleothem, and it has very few sediments. Some parts of the speleothem were extracted and they were sent to a dating specialised team.

The geochronologists tested the pureness of the sample and they dated it using the disintegration of uranium/thorium. The dating has demonstrated that the speleothem is older than it was actually thought, and therefore, the bones of Homo heidelbergensis that lay under the speleothem are also older.

Until now, the bones were estimated to be between 200,000 and 320,000 years old, based on paleomagnetism, U-series and the ESR method applied in bones, but these datings were not accurate. The last dating of the speleothem has clearly proved that the bones of Homo heidelbergensis are more than 350,000 years-old.

Media Contact

Garazi Andonegi alfa

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…