Scientists determine biological and ecosystem changes in polar regions linked to solar variability

A Lawrence Livermore National Laboratory scientist, in collaboration with an international team of colleagues, has reported that noticeable changes in the sub-polar climate and ecosystems appear to be linked to variations in the sun’s intensity during the past 12,000 years.

The research, titled “Cyclic Variation and Solar Forcing of Holocene Climate in the Alaskan Subarctic,” is reported in today’s (Sept. 26) issue of Science.

Using core sediment samples from Arolik Lake in the tundra region along the southwestern coast of Alaska, Thomas Brown of Livermore’s Center for Accelerator Mass Spectrometry measured the amount of carbon-14 in samples to provide a chronological framework for the biological and organic evidence of climate and ecosystem changes, which occurred during the Holocene Epoch (12,000 years ago to present).

By studying biological, geochemical and isotopic constituents of sediment samples (such as biogenic silica from single-celled algae, which reflects lake productivity), the researchers determined that variations of these components provided evidence of climate and ecosystem variations over the past 12,000 years.

The scientists identified significant cycles lasting 200, 435, 590 and 950 years in the 12,000-year record, which are consistent with previously recognized cycles of solar activity. By comparison of the Alaskan subarctic record to recent findings of North Atlantic ice cover variations and solar-activity-modulated production records of beryllium- 10 and carbon-14, the scientists showed that the changes in sub-polar climate and ecosystems are correlated with records related to slight variations in solar irradiance.

The data from biogenic silica, North Atlantic sea ice, and beryllium-10 and carbon-14 showed “remarkable correlation during the cycles”, Brown said.

“We found natural cycles involving climate and ecosystems that seem to be related to weak solar cycles, which, if verified, could be an important factor to help us understand potential future changes of Earth’s climate,” said principal investigator Feng Sheng Hu of the University of Illinois at Champaign- Urbana.

“Will changes in solar irradiation in the future mitigate or exacerbate global warming in the future? They may do both. A period of high solar irradiance on top of high levels of greenhouse gases could result in unprecedented warming.”

Other contributors come from Northern Arizona University, the Weizmann Institute of Science in Israel, Brown University and Columbia University.

###
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Media Contact

Anne Stark EurekAlert!

More Information:

http://www.berkeley.edu/

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…