Scientists find evolution of life
A trio of scientists including a researcher from the Lawrence Livermore National Laboratory has found that humans may owe the relatively mild climate in which their ancestors evolved to tiny marine organisms with shells and skeletons made out of calcium carbonate.
In a paper titled “Carbonate Deposition, Climate Stability and Neoproterozoic Ice Ages” in the Oct. 31 edition of Science, UC Riverside researchers Andy Ridgwell and Martin Kennedy along with LLNL climate scientist Ken Caldeira, discovered that the increased stability in modern climate may be due in part to the evolution of marine plankton living in the open ocean with shells and skeletal material made out of calcium carbonate. They conclude that these marine organisms helped prevent the ice ages of the past few hundred thousand years from turning into a severe global deep freeze.
“The most recent ice ages were mild enough to allow and possibly even promote the evolution of modern humans,” Caldeira said. “Without these tiny marine organisms, the ice sheets may have grown to cover the earth, like in the snowball glaciations of the ancient past, and our ancestors might not have survived.”
The researchers used a computer model describing the ocean, atmosphere and land surface to look at how atmospheric carbon dioxide would change as a result of glacier growth. They found that, in the distant past, as glaciers started to grow, the oceans would suck the greenhouse gas — carbon dioxide out of the atmosphere — making the Earth colder, promoting an even deeper ice age. When marine plankton with carbonate shells and skeletons are added to the model, ocean chemistry is buffered and glacial growth does not cause the ocean to absorb large amounts of carbon dioxide from the atmosphere.
But in Precambrian times (which lasted up until 544 million years ago), marine organisms in the open ocean did not produce carbonate skeletons — and ancient rocks from the end of the Precambrian geological age indicate that huge glaciers deposited layers of crushed rock debris thousands of meters thick near the equator. If the land was frozen near the equator, then most of the surface of the planet was likely covered in ice, making Earth look like a giant snowball, the researchers said.
Around 200 million years ago, calcium carbonate organisms became critical to helping prevent the earth from freezing over. When the organisms die, their carbonate shells and skeletons settle to the ocean floor, where some dissolve and some are buried in sediments. These deposits help regulate the chemistry of the ocean and the amount of carbon dioxide in the atmosphere. However, in a related study published in Nature on Sept. 25, 2003, Caldeira and LLNL physicist Michael Wickett found that unrestrained release of fossil-fuel carbon dioxide to the atmosphere could threaten extinction for these climate-stabilizing marine organisms.
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energys National Nuclear Security Administration.
Media Contact
All latest news from the category: Earth Sciences
Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.
Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…