Atmospheric water clusters provide evidence of global warming

Hamilton College professor/students publish findings in JACS

Researchers at Hamilton College have identified several methods for successfully determining the structures and thermodynamic values for the formation of atmospheric water clusters, which scientists have speculated may accelerate global warming. The Hamilton team’s findings were published in the March 3 issue of the Journal of the American Chemical Society.

The greenhouse effect is caused by molecules that absorb infrared radiation released from the Earth’s surface, trapping heat in the atmosphere. Water acts as a greenhouse gas because it is one of the molecules that can absorb infrared radiation and cause warming. “Our research supports the suggestion that in a global warming scenario higher temperatures will lead to increased absorption of solar radiation by water clusters,” said lead author, George Shields, the Winslow Professor of Chemistry at Hamilton College. “The prediction that higher order water clusters (trimers, tetramers, and pentamers) are present in the atmosphere is significant because it shows that these entities must be considered as key players in atmospheric processes.”

Previous research has hypothesized that water clusters (two or more water molecules held together by hydrogen bonds) could catalyze acid rain or the formation of aerosol in the atmosphere, and even lead to acceleration of the Greenhouse effect. All of these ideas depend on the presence of water clusters in the troposphere, the region of the atmosphere that is directly heated by the Earth’s surface. The Hamilton group can now predict the concentration of water clusters present in the troposphere. Large water clusters have for some time been thought to catalyze reactions which have implications for the chemistry that takes place in the atmosphere. A paper in the June 27, 2003 issue of Science documented the first detection of a water dimer (two hydrogen bonded water molecules) in the troposphere.

Shields said, “Once we knew the dimers were present, we investigated whether larger water clusters might also be involved in a variety of atmospheric chemistry processes. We started by using high level quantum chemistry methods to predict dimer concentrations that would be found on a warm, humid day. The accuracy of our dimer calculation, which matched the experimentalists’ detection of water dimer concentrations under the same conditions, led us to calculate the concentration of other water clusters in the troposphere.” The researchers found that water clusters consisting of cyclic trimers, cyclic tetramers, and cyclic pentamers should all be detectable in the lower troposphere.

The Hamilton researchers used the documented information on water cluster structures to investigate the effectiveness of various model chemistries in modeling gas-phase water cluster formation. The performance of these chemistries was compared against previous calculations, and the Hamilton team found that thermodynamic calculations by Gaussian-2, Gaussian-3 and Complete Basis Set-APNO chemistries compared quite well to the prior calculations. (Experimentalists reported a value of 6 x 10^14 dimers per cubic centimeter at 292 K on a 100% humid day. The Hamilton study predicted a value of 4 x 10^14 dimers per cubic centimeter at 292 K.)

George Shields conducted the research with two undergraduate students, Meghan Dunn and Emma Pokon. The research was made possible through funding from the American Chemical Society/Petroleum Research Fund, Merck/AAAS, the Camille and Henry Dreyfus Foundation, and from NSF Grant CHE-0116435 for supercomputer instrumentation as part of the MERCURY supercomputer consortium (http://mars.hamilton.edu).

Media Contact

Sharon Rippey EurekAlert!

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Visualization of selective RNA technology targeting glioblastoma cells.

Self-Destructing Cancer Cells: Cutting-Edge RNA Breakthrough

Jülich scientists use novel RNA technology to selectively switch off tumours in the brain. An Adaptable Platform Technology That Destroys Glioblastoma Cancer Cells Using a special RNA molecule, a team…

HFpEF patients engaging in endurance and strength training as part of a clinical trial on exercise therapy for heart failure.

Endurance Training: Transforming Lives of Heart Failure Patients

Can strength and endurance training be beneficial for patients with a certain form of heart failure? A research team from Greifswald investigated this question together with seven other research centers…

A map highlighting shark conservation measures in the Mediterranean Sea.

A Wake-Up Call for Mediterranean Shark Protection Against Extinction

Overfishing, illegal fishing and increasing marketing of shark meat pose significant threats to the more than 80 species of sharks and rays that inhabit the Mediterranean Sea, according to a…