Weather forecasts misleading due to atmospheric fluctuations?
Scientists at Oxford University have discovered that small-scale fluctuations, which are wide-spread in the atmosphere, may have a greater impact on weather systems than previously thought. The results, published in Nonlinear Processes in Geophysics, may have important implications for accurate weather forecasting.
The fluctuations, known as inertia-gravity waves because they are sustained by a combination of inertial and gravitational forces, are prominent in the bottom 15 km of the atmosphere.
They can often be seen from the surface of the Earth as stripy features in clouds. Their horizontal wavelengths can be as short as 5 km – too small to be picked up by current weather prediction models, which divide the surface of the Earth into grid-boxes measuring around 50 km by 50 km.
Meteorologists have therefore always had to assume that inertia-gravity waves do not significantly interact with weather systems, such as warm and cold fronts, but this assumption had never been rigorously tested.
Motivated by the results of laboratory experiments, which seemed to challenge the meteorologists assumption, the Oxford scientists developed a computer model of a simple fluid system resembling the atmosphere. They represented the inertia-gravity waves as random noise in the model, since the fluctuations can be highly irregular, chaotic and transient. They found that the system could behave differently when the inertia-gravity wave representation was activated – in other words, the meteorologists’ assumptions were not always justified.
In particular, the state of the fluid could undergo spontaneous transitions to quite different states, with a dramatic shift in the patterns of low and high pressure. Extrapolation of these results to the real atmosphere suggests that inertia-gravity waves could be a cause of significant errors in weather forecasts. The surprise implication of the research is that adding random noise to the forecast might actually help improve things.
Dr Paul Williams, one of the scientists involved in the study, said: It seems that we have observed a phenomenon which might have the potential to affect the accuracy of weather forecasts. More research is needed to find out exactly how bad the forecast error might be, but the preliminary results are very exciting. It sounds bizarre to suggest that adding random noise to a forecast might help to improve it, but science is always full of surprises!
Media Contact
More Information:
http://www.copernicus.org/EGU/npg/11/contents1.htmAll latest news from the category: Earth Sciences
Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.
Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.
Newest articles
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…
ASXL1 Mutation: The Hidden Trigger Behind Blood Cancers and Inflammation
Scientists show how a mutated gene harms red and white blood cells. LA JOLLA, CA—Scientists at La Jolla Institute for Immunology (LJI) have discovered how a mutated gene kicks off…