Geological demolition derby
The spectacular rift valleys of the Tibetan plateau dont all run north-south as previously thought, according to new research.
The rift valleys actually curve away — some to the east, some to the west — from the point where India is punching into the gut of Tibet. “Everyone looked at the rifts and said they went north-south,” said Paul Kapp, assistant professor of geosciences at the University of Arizona in Tucson. “I looked and said — theyre not.” His work contradicts a leading theory that suggests the rifts are a consequence of Tibet flowing slowly out over Indias northern edge.
The new research indicates the Tibetan plateau is being compressed between the Indian subcontinent to the south and the solid wall of the North China block. As a result, Tibet is splitting much like an orange squeezed by a vise. Kapps research challenges the idea that the 16,000-foot-high Tibetan plateau, the highest-elevation region on Earth, is losing elevation. Previous research reported the Tibetan plateau reached its highest elevation eight million years ago and is now slowly deflating as it spreads out over India. “My hypothesis predicts that the plateau is getting higher. The other theory suggests the plateau is collapsing,” he said. “Were in a place where continents are slamming against each other. Instead of Tibet crumpling like an accordion, we see these rift valleys. The rifts are from the east-west stretching of the plateau.”
The article, “India Punch Rifts Tibet,” by Kapp and Jerome H. Guynn, a doctoral candidate in UAs department of geosciences, is in the November issue of the journal Geology. Although the standard description says Tibets rift valleys run north-south, that didnt square with what Kapp saw when he looked at topographic maps of the area. The problem nagged at him for years.
In fall of 2003, he was teaching structural geology. As he worked on the lecture about stress in the crust from continents colliding, he realized that collisional stress caused the pattern of Tibets rift valleys. He remembers thinking, “Yeah, thats it!” “It took me eight years to recognize the pattern,” he said. “It took me two days to come up with an explanation.”
Geologists often use digital elevation models, or DEMs, that are developed from satellite imagery. Such maps, which look like a shaded relief map, show the Earths current surface in incredible detail. Kapp said that the detailed nature of such maps obscures the underlying pattern of the rifts.
So Kapp and Guynn used a computer to strip away the DEMs superficial layers to expose the underlying structure of the plateau. Once they created a bare-bones map of the region, the curving patterns of the rifts were clear. “I took away all the secondary faults and then the pattern jumped out,” Kapp said. Because India is crashing into Tibet, geologists call India “the indentor.” Kapp says that because India is hitting Tibet head-on, the Tibetan plateau is developing splits, or rifts, that curve away from the axis of impact.
Once Kapp figured out what caused the rifts, he and Guynn created mathematical models to test the idea. According to the models, a head-on punch split the plateau just the way Kapp predicted. In addition to punching Tibet directly, a lower portion of the Indian subcontinent is sliding under Tibet and lifting the plateau, Kapp said. Measuring how much Tibet is moving up or down is extremely difficult, although the technology is getting better all the time. “I think there will be some serious arguing for probably the next five years.”
The Himalayas and Tibet are an area of active research by many groups of geologists. Kapp said, “If you want to understand mountain-building, you go there.” Kapp and Guynn are among them. This summer theyll be there scanning the regions rocks for more evidence to support their new theory.
Media Contact
More Information:
http://www.arizona.eduAll latest news from the category: Earth Sciences
Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.
Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.
Newest articles
Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans
The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…