URI physical oceanography combine numerical models to improve hurricane research
Understanding how the air and sea interact and affect each other during hurricane conditions is crucial in predicting the storm track, its intensity, storm surges, and ocean wave fields. When scientists create computer models to help them assess the parameters of a hurricane, they must take into account not only the atmospheric conditions of the storm, but also the conditions in the ocean, including the age and the frequency of waves.
In the current issue of the Journal of the Atmospheric Sciences, University of Rhode Island physical oceanographers Il-Ju Moon, Isaac Ginis and Tetsu Hara have published two companion papers that investigate the how surface waves and wind affect the dynamics of growing seas and complex seas under extreme hurricane conditions using a combination of computer models. Other collaborators on the project include Stephen Belcher, Department of Meteorology, University of Reading, Berkshire, England, and Hendrik Tolman, the NOAA National Center for Environmental Prediction Environmental Modeling Center, Camp Springs, MD.
The team of scientists combined three computer models to ascertain their results. The NOAA WAVEWATCH III ocean surface wave model accounts for wind input, wave-wave interaction and dissipation due to whitecapping, and wave-bottom interaction. The equilibrium spectrum model, created by Hara and Belcher, estimates the effect of the wind on the ocean by taking into account the stress caused by the waves. The wave boundary layer model, also created by Hara and Belcher, explicitly calculates the near-surface wind profile, as well as the surface drag created by the waves. In the first study, the combined model predicted the effect of the wind-wave interaction by calculating how the waves contribute to the dynamics of a mature and growing sea. The second study followed the same approach, but focused on the effect of surface waves on air-sea exchange in extreme complex seas forced by tropical cyclones.
The scientists found a new characterization of the effect of surface waves on air-sea momentum under hurricane wind forcing. The size and location of the waves as well as the wind speed and direction and their impact on the other create a variety of conditions that can affect the track and intensity of a hurricane. The research team determined that the coupling of a surface wave model with a hurricane model is necessary for accurate predictions of track and intensity. This finding is significant because the wind-wave interaction is presently ignored by hurricane prediction models.
“There have been impressive strides taken in the quality of hurricane track forecasting over the last 10 years mainly due to improved computer models,” said Ginis. “However, there appears to be still limited skill in predicting storm intensity changes. In light of the fundamental role the air-sea interaction processes play in supplying energy to the hurricane, our results seem to be promising for major improvements in hurricane intensity forecasting.”
The combined models used in this project have helped scientists to further understand the interaction of the atmosphere and the ocean by introducing parameters that describe the ocean waves under high wind conditions, including during a tropical cyclone. Additional factors, such as the effect of breaking waves and sea spray, may also play an important role in air-sea interaction and momentum, but the team of scientists predicts that adding parameters will only further confirm their results.
Media Contact
More Information:
http://www.gso.uri.eduAll latest news from the category: Earth Sciences
Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.
Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…