Scientists determine fault near tsunami area moving 10 millimeters per year

This space shuttle photo looks south from the Tarim Basin in the foregound across the western Kunlun range and on to the Indian subcontinent in the distance. The two major faults of western Tibet, the Karakax and the Karakorum faults, are clearly seen as linear features cutting across the image. Photo: Earth Sciences and Image Analysis/NASA-Johnson Space Center

Livermore researchers have determined the Karakorum fault in Tibet, a feature formed by the same tectonic “collision” that caused the recent tsunami, has slipped 10 millimeters per year during the last 140,000 years.


Earlier research by outside scientists using satellite radar interferometry (InSAR) conducted over a decadal time scale indicated that the Karakorum fault and the Karakax segment of the Altyn Tagh fault in western Tibet are essentially inactive.

But Livermore scientists Rick Ryerson, Marie-Luce Chevalier (a visiting student from the Institut de Physique du Globe de Paris), and Bob Finkel, along with colleagues in France and China, studied Karakorum movement along a single strand of the fault system over a millennial time scale and found the slip to be 10 times larger than that of the slip rate across the entire fault from the InSAR data.

Karakorum is the main right-lateral motion fault north of the Himalayas and is in the same area as the earthquakes that caused the tsunami in Asia. Both areas are located on the northern edge of the Indian plate where northward motion has caused earthquakes and the growth of the Tibetan plateau.

“Determining the past and present movement along the Karakorum fault is crucial in understanding the movement of the entire Asian continent,” Ryerson said. “It’s the collision of the India continental material and the Asian continental material that has caused the uplift of the Himalayas and Tibet.”

The research appears in the Jan. 21 edition of the journal Science.

Livermore researchers measured the mid- to late-Pleistocene (from two million to 11,000 years ago) slip rate on the southern stretch of the fault by dating two moraine crests displaced by the fault at the end of the Manikala glacial valley. A moraine is an accumulation of boulders, stones or other debris carried and deposited by a glacier. The dating method is based upon the accumulation of isotopes produced when cosmic-rays hit the earth’s surface.

From dating the two moraines, they determined that they become younger from east to west, which is consistent with the right-lateral motion on the fault. “Ultimately this research should lead to the development of new models that accommodate and explain the different slip rates,” Ryerson said.

The researchers further concluded that the rate of movement between southwestern Tibet and the western Himalayas should be greater than 10 millimeters per year because movement on the main fault (Altyn Tagh) along with slip from other active faults in the region need to be taken into account.

Researchers from Laboratoire de Tectonique, Institut de Physique du Globe de Paris, Institut de Physique du Globe de Strasbourg, the Chinese Academy of Geological Sciences and Total Exploration China also contributed to the report.

Media Contact

Anne Stark EurekAlert!

More Information:

http://www.llnl.gov

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

3D tumor model for retinoblastoma research highlighting tumor-environment interactions.

Retinoblastoma: Eye-Catching Investigation into Retinal Tumor Cells

A research team from the Medical Faculty of the University of Duisburg-Essen and the University Hospital Essen has developed a new cell culture model that can be used to better…

Private wells serving as emergency water sources to enhance disaster resilience during crises.

A Job Well Done: How Hiroshima’s Groundwater Strategy Helped Manage Floods

Groundwater and multilevel cooperation in recovery efforts mitigated water crisis after flooding. Converting Disasters into Opportunities Society is often vulnerable to disasters, but how humans manage during and after can…

DNA origami structures controlling biological membranes for targeted drug delivery

Shaping the Future: DNA Nanorobots That Can Modify Synthetic Cells

Scientists at the University of Stuttgart have succeeded in controlling the structure and function of biological membranes with the help of “DNA origami”. The system they developed may facilitate the…