Findings by Scripps Scientists Cast New Light on Undersea Volcanoes

Hawaii-Emperor chain, the conventional theory holds.

Study in Science may help change the broad understanding of how they are formed


Researchers at Scripps Institution of Oceanography at the University of California, San Diego, have produced new findings that may help alter commonly held beliefs about how chains of undersea mountains formed by volcanoes, or “seamounts,” are created. Such mountains can rise thousands of feet off the ocean floor in chains that span thousands of miles across the ocean.

Since the mid-20th century, the belief that the earth’s surface is covered by large, shifting plates–a concept known as plate tectonics–has shaped conventional thinking on how seamount chains develop. Textbooks have taught students that seamount patterns are shaped by changes in the direction and motion of the plates. As a plate moves, stationary “hot spots” below the plate produce magma that forms a series of volcanoes in the direction of the plate motion.

Now, Anthony Koppers and Hubert Staudigel of Scripps have published a study that counters the idea that hot spots exist in fixed positions. The paper in the Feb. 11 issue of Science shows that hot spot chains can change direction as a result of processes unrelated to plate motion. The new research adds further to current scientific debates on hot spots and provides information for a better understanding of the dynamics of the earth’s interior.

To investigate this phenomenon, Staudigel led a research cruise in 1999 aboard the Scripps research vessel Melville to the Pacific Ocean’s Gilbert Ridge and Tokelau Seamounts near the international date line, a few hundred miles north of American Samoa and just south of the Marshall Islands.

Gilbert and Tokelau are the only seamount trails in the Pacific that bend in sharp, 60-degree angles–comparable in appearance to hockey sticks–similar to the bending pattern of the Hawaii-Emperor seamount chain (which includes the Hawaiian Islands).

Assuming that these three chains were created by fixed hot spots, the bends in the Gilbert Ridge and Tokelau Seamounts should have been created at roughly the same time period as the bend in the Hawaii-Emperor chain, the conventional theory holds.

Koppers, Staudigel and a team of student researchers aboard Melville spent six weeks exploring the ocean floor at Gilbert and Tokelau. They used deep-sea dredges to collect volcanic rock samples from the area.

For the next several years, Koppers used laboratory instruments to analyze the composition of the rock samples and calculate their ages. “It was quite a surprise that we found the Gilbert and Tokelau seamount bends to have completely different ages than we expected,” said Koppers, a researcher at the Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics at Scripps. “We certainly didn’t expect that they were 10 and 20 million years older than previously thought.”

Instead of forming 47 million years ago, as did the Hawaiian-Emperor bend, the Gilbert chain was found to be 67 million years old and the Tokelau 57 million years old. “I think this really hammers it in that the origin of the alignment of these seamount chains may be much more complicated than we previously believed, or the alignment may not have anything to do with plate motion changes,” said Staudigel.

Although they do not have positive proof as yet, Koppers and Staudigel speculate that local stretching of the plate may allow magma to rise to the surface or that hot spots themselves might move. Together with plate motion, these alternate processes may be responsible for the resulting pattern of seamounts.

Koppers and Staudigel will go to sea again next year to seek additional clues to the hot spot and seamount mysteries. “Seamount trails are thousands of kilometers long and even if we are out collecting for several weeks, we still only cover a limited area,” said Koppers. “One of the things holding us back in developing a new theory is that the oceans are humongous and our database is currently very small we are trying to understand a very big concept.”

The study was funded by the National Science Foundation.

Scripps Institution of Oceanography, at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. The scientific scope of the institution has grown since its founding in 1903 to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $140 million from federal, state, and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Media Contact

Mario Aguilera EurekAlert!

More Information:

http://www.ucsd.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…