Earth’s Auroras Don’t Mirror
Thanks to observations from the ground and satellites in space, scientists know that the North and South Poles light up at night with Auroras because a “solar wind” of electrified gas continually flows outward from the sun at high speed in all directions, including toward the Earth. Recently, however, NASA and university scientists looking at the Earths northern and southern auroras were surprised to find they arent mirror images of each other, as was once thought.
According to scientists, the main cause behind the differences in location appears to be what occurs between the solar wind and Earths magnetic field.
The Earths magnetic field, like that of the sun and some of the other planets, is generated by electrical currents flowing inside them. The suns magnetic field, like that of Earth, has a north and south pole linked by lines of magnetic force.
Looking at the auroras from space, they look like almost circular bands of light around the North and South Poles. At the North Pole, its called aurora borealis, or northern lights, and at the South Pole its called the aurora australis, or southern lights.
From spacecraft observations made in October, 2002, scientists noticed that these circular bands of aurora shift in opposite directions to each other depending on the orientation of the suns magnetic field, which travels toward the Earth with the solar wind flow. They also noted that the auroras shift in opposite directions to each other depending on how far the Earths northern magnetic pole is leaning toward the sun.
What was most surprising was that both the northern and southern auroral ovals were leaning toward the dawn (morning) side of the Earth for this event. The scientists suspect the leaning may be related to “imperfections” of the Earths magnetic field.
“This is the first analysis to use simultaneous observations of the whole aurora in both the northern and southern hemispheres to track their locations,” said lead author Timothy J. Stubbs of the Laboratory for Extraterrestrial Physics at NASAs Goddard Space Flight Center (LEP/GSFC), Greenbelt, Md.
The Earths magnetic field provides an obstacle in the flow of the solar wind, and it becomes compressed into what looks like an extended tear-drop shaped bubble known as the “magnetosphere.” The magnetosphere protects the Earth by shielding it from the solar wind. However, under certain conditions charged particles from the solar wind are able to get through Earths magnetic shield and get energized. When this happens, they crash into the Earths upper atmosphere and create the light which we see as an “aurora.”
Stubbs and his colleagues, Richard R. Vondrak, and John B. Sigwarth, both of LEP/GSFC, Nikolai Østgaard at the University of Bergen, Norway and Louis A. Frank at the University of Iowa, used data from NASAs Polar and IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) spacecraft to study the auroras. It was by luck that the orbits of Polar and IMAGE were aligned such that the entire auroras at the north and south poles could be observed in detail at the same time.
By knowing how auroras react to the solar wind, scientists can better determine the impacts of space weather in the future. The new discovery shows that auroras may be more complicated than previously thought.
Media Contact
All latest news from the category: Earth Sciences
Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.
Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.
Newest articles
Humans vs Machines—Who’s Better at Recognizing Speech?
Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…
Not Lost in Translation: AI Increases Sign Language Recognition Accuracy
Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…
Breaking the Ice: Glacier Melting Alters Arctic Fjord Ecosystems
The regions of the Arctic are particularly vulnerable to climate change. However, there is a lack of comprehensive scientific information about the environmental changes there. Researchers from the Helmholtz Center…