Scientists confirm Earth’s energy is out of balance
Using satellites, data from buoys and computer models to study the Earths oceans, scientists have concluded that more energy is being absorbed from the Sun than is emitted back to space, throwing the Earths energy “out of balance” and warming the planet.
Scientists from the National Aeronautics and Space Administration (NASA) (Washington, D.C.), The Earth Institute at Columbia University (New York), and Lawrence Berkeley National Laboratory (California) have confirmed the energy imbalance by precisely measuring ocean heat content occurring over the past decade.
The study, which appears in this weeks Science Express, a feature of Science magazine, reveals that Earths current energy imbalance is large by standards of Earths history. The current imbalance is 0.85 watts per meter squared (W/m2) and will cause an additional warming of 0.6 degrees Celsius (1 degree Fahrenheit) by the end of this century. This is equal to a 1-watt light bulb shining over an area of one square meter or 10.76 square feet. Although seemingly small, this amount of heat affecting the entire world would make a significant impact. To put this number in perspective, an imbalance of 1 W/m2 maintained for the last 10,000 years is enough to melt ice equivalent to 1 kilometer (6/10ths of a mile) of sea level.
The Earths energy imbalance is an expected consequence of increasing atmospheric pollution, especially carbon dioxide (CO2), methane (CH4), ozone (O3), and black carbon particles (soot). These pollutants block the Earths radiant heat from escaping into space, increasing absorption of sunlight and trapping heat within the atmosphere.
“This energy imbalance is the smoking gun that we have been looking for,” says James Hansen, director of NASAs Goddard Institute for Space Studies, part of The Earth Institute at Columbia University, and the lead author of the study. “It shows that our estimates of the human-made and natural climate forcing agents are about right, and they are driving the Earth toward a warmer climate.”
Scientists know that increased radiation takes longer to manifest in the worlds oceans longer than it does on land; the ocean, instead of showing an immediate temperature increase, holds the heat in storage within its depths, thus delaying a response to human-induced, or anthropogenic, climate change. The oceans delayed response is similar to what happens during the summer months, when the ocean takes longer to warm up than do land surfaces. The building heat within the oceans depths is what is known as “thermal inertia.”
The lag in the oceans response has practical consequences. For one thing, it means that there is an additional global warming of about 1 degree Fahrenheit that is already “in the pipeline,” and has not yet manifested in overall ambient temperatures. Even if there were no further increase of human-induced gases in the air, climate would continue to warm about that much over the next century.
The lag in the climate response is both a boon and a problem for policy-makers. The delayed response of thermal inertia provides an opportunity to reduce the magnitude of human-made climate change before it is fully realized, provided that actions to reduce climate forcing agents are undertaken. On the other hand, if the world decides to wait for more overwhelming evidence of climate change, thermal inertia implies that still greater climate change will be in store, which may be difficult or impossible to avoid.
Warmer water temperatures around the world may also lead to other significant climate-related consequences. “Warmer waters increase the likelihood of accelerated ice sheet disintegration and sea level rise during this century,” Hansen said. Since 1993, data from satellite altimeters, used to measure sea level, have shown that the worlds oceans have risen by 3.2 centimeters (cm), or 1.26 inches, per decade (plus or minus 0.4 cm).
Although 3.2 cm may appear to be only a slight increase, it is twice as large as sea level rise in the last century. “There are positive feedbacks that come into play as the area of ice melt increases,” says Hansen, “so we need to monitor the ice sheets and sea level precisely to be sure that the system is not running out of our control.”
Media Contact
All latest news from the category: Earth Sciences
Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.
Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.
Newest articles
Humans vs Machines—Who’s Better at Recognizing Speech?
Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…
Not Lost in Translation: AI Increases Sign Language Recognition Accuracy
Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…
Breaking the Ice: Glacier Melting Alters Arctic Fjord Ecosystems
The regions of the Arctic are particularly vulnerable to climate change. However, there is a lack of comprehensive scientific information about the environmental changes there. Researchers from the Helmholtz Center…