FSU meteorologists’ work may lead to better tracking of hurricanes

Scientists are continually exploring different aspects of hurricanes to increase the understanding of how they behave. Recently, two NASA-funded scientists from Florida State University analyzed ozone levels surrounding hurricanes. Their work could lead to better methods of forecasting the paths of the deadly storms.


In their study, FSU meteorologists Xiaolei Zou and Yonghui Wu found that variations of ozone levels from the surface of the ocean to the upper atmosphere are closely related to the formation, intensification and movement of a hurricane. In studying meteorological data from 12 such storms, Zou and Wu noticed that over an area of 100 miles, the area surrounding each hurricane typically had low levels of ozone from the surface to the top of the storm. Whenever the hurricane intensified, the ozone levels throughout the storm decreased even more.

In addition, when Zou and Wu examined hurricanes using the ozone data, the eye of the storms became very clear. Because forecasters always try to pinpoint the eye of the hurricane, this knowledge will help with locating a storm’s exact position and possibly lead to better tracking.

The National Oceanic and Atmospheric Administration’s National Hurricane Center (NHC) is the agency that issues hurricane forecasts. Of the 12 storms analyzed, the ozone data and the NHC official report differed on the mean distance between the estimated eye by less than 18 miles during the most intense stage of the storms. When Zou and Wu added the satellite-observed ozone levels around a hurricane into a computer forecast model, the model greatly improved the predicted track that the hurricane would take.

“This research highlights the benefits of Total Ozone Mapping Spectrometer (TOMS) data in hurricane track and intensity prediction, an important forecasting problem since hurricanes often strike regions of high population and property growth, resulting in large natural disasters,” said Zou.

Another interesting finding from Zou and Wu’s research is that ozone levels give a clue that a storm will develop before other methods do. The early spin of a tropical cyclone is weak and sometimes covered by clouds, and not easily detected by satellites that provide pictures of clouds. The ozone data gives scientists a “look beyond the clouds.”

Ozone is all around the world and in the upper and lower atmosphere. Ozone in the upper atmosphere protects life on Earth from harmful ultraviolet rays from the sun, which can cause sunburn and skin cancer in humans. Ozone close to the surface is a pollutant; on hot, humid days with little wind, it creates a haze, such as that over big cities, that is harmful to breathe.

By using NASA’s satellite Earth Probe/TOMS total ozone data, forecasters can identify ozone amounts that are closely related to the formation, intensification and movement of a hurricane. Zou and Wu also found a strong relationship between ozone, air pressure and spin within the hurricanes.

Zou said that the connections between ozone levels and hurricane behavior are a very important step in understanding the storms. For more information and images about this research, please see: www.nasa.gov/vision/earth/environment/ozone_drop.html

Media Contact

Xiaolei Zou EurekAlert!

More Information:

http://www.fsu.com

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Amphiphile-enhanced wearable fabric generating electricity from movement

Smart Fabrics: Innovative Comfortable Wearable Tech

Researchers have demonstrated new wearable technologies that both generate electricity from human movement and improve the comfort of the technology for the people wearing them. The work stems from an…

Visualization of Atlantic Meridional Overturning Circulation (AMOC) stability over 60 years

Going Steady—Study Reveals North Atlantic’s Gulf Stream Remains Robust

A study by the University of Bern and the Woods Hole Oceanographic Institution in the USA concludes that the ocean circulation in the North Atlantic, which includes the Gulf Stream,…

Foraminifera absorbing phosphate from ocean water to reduce pollution

Single-Celled Heroes: Foraminifera’s Power to Combat Ocean Phosphate Pollution

So-called foraminifera are found in all the world’s oceans. Now an international study led by the University of Hamburg has shown that the microorganisms, most of which bear shells, absorb…