Natural electrical potential difference affects water transport in clay

Dutch Researcher Katja Heister investigated how electrical potential differences in clay layers influence the transport of salt and water through these. The outcomes of her research have important implications for new models of water transport, for example, those which predict the distribution of substances from waste deposits.

The transport of water and its solutes through clay plays an important role, for example, in the intrusion of seawater into the groundwater of coastal areas, the distribution of substances from polluted sludge or waste sites and the storage of radioactive or toxic waste in deep clay layers.

Until now, computer models for water transport did not consider transport due to electrical potential differences. However the effects of an electrical potential difference across different clay layers cannot be ignored and must be included in these models. The data and parameters obtained by Heister during her research can be used for this purpose.

Water transport in the soil is not only caused by hydrostatic pressure but also by differences in salt concentration and electrical potential difference. These processes are called chemical osmosis and electro-osmosis, respectively. Both a difference in water pressure and in salt concentration can give rise to an electrical potential difference over the clay layer that affects the transport of water (streaming potential) and solutes (membrane potential) through it. The potential differences arise because the clay layer acts like a semi-permeable membrane, in a similar manner to the wall of a biological cell.

In laboratory experiments, Heister examined the effect of streaming and membrane potentials on the transport of water and dissolved salts through a dense clay layer. She used different types of clay such as a commercially available Wyoming bentonite, Boom Clay from Belgium and Calais Clay from the polder Groot Mijdrecht in the Netherlands.

Heister observed significant streaming and membrane potentials in both the Wyoming bentonite and the Boom Clay. These potential differences give rise to a counterflow of water and salts through the clay. The Calais Clay strongly acidified in the laboratory to form an acid sulphate soil, in Dutch ’katteklei’. Heister could not observe any electrical potentials in this.

Media Contact

Dr Katja Heister alfa

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Cichlids practicing brood care in 3D-printed snail shells

Time to Leave Home? Revealed Insights into Brood Care of Cichlids

Shell-dwelling cichlids take intense care of their offspring, which they raise in abandoned snail shells. A team at the Max Planck Institute for Biological Intelligence used 3D-printed snail shells to…

Amphiphile-enhanced wearable fabric generating electricity from movement

Smart Fabrics: Innovative Comfortable Wearable Tech

Researchers have demonstrated new wearable technologies that both generate electricity from human movement and improve the comfort of the technology for the people wearing them. The work stems from an…

Visualization of Atlantic Meridional Overturning Circulation (AMOC) stability over 60 years

Going Steady—Study Reveals North Atlantic’s Gulf Stream Remains Robust

A study by the University of Bern and the Woods Hole Oceanographic Institution in the USA concludes that the ocean circulation in the North Atlantic, which includes the Gulf Stream,…