NCAR climate expert: Hurricanes to intensify as Earth warms

Warmer oceans, more moisture in the atmosphere, and other factors suggest that human-induced climate change will increase hurricane intensity and rainfall, according to climate expert Kevin Trenberth of the National Center for Atmospheric Research. His paper, “Uncertainty in Hurricanes and Global Warming,” appears in the Perspectives section of the June 17 issue of Science.


“Trends in human-influenced environmental changes are now evident in hurricane regions,” says Trenberth. “These changes are expected to affect hurricane intensity and rainfall, but the effect on hurricane numbers remains unclear. The key scientific question is how hurricanes are changing.”

Trenberth’TMs paper follows extensive tropical activity last year, including a record number of hurricane landfalls affecting Florida and typhoons striking Japan. These landfalls were related to persistent large-scale circulation features that steered these systems toward land, Trenberth says. It is unclear how global warming will affect these circulation patterns, he adds.

The strongest links between hurricane intensity and climate change, according to Trenberth, are a long-term rise in ocean temperatures and an increase in atmospheric water vapor. Both processes are already under way and expected to continue, he says. The additional water vapor will tend to produce heavier rains within hurricanes and an increased risk of flooding at landfall, Trenberth notes.

Most hurricanes that strike the U.S. coastline are born in the tropical North Atlantic, where sea-surface temperatures over the last decade have been the warmest on record. Water vapor over oceans worldwide has increased by about 2% since 1988. The warmer sea surface and moister atmosphere furnish potential energy for the showers and thunderstorms that fuel hurricanes. “Computer models also suggest a shift in hurricane intensities toward extreme hurricanes,” says Trenberth.

Much more uncertain is the effect of human-induced climate change on hurricane numbers and landfalls. Models disagree on how global warming might affect the wind shear that can either support or discourage hurricane formation.

Globally, the number of hurricanes and typhoons tends to hold relatively steady from year to year. When activity increases in the Atlantic, it often decreases in the Pacific, and vice versa, based in part on El Ñino and La Ñina.

Trenberth points out that, because hurricane numbers vary so greatly on a regional level from year to year and decade to decade, it is difficult to use statistical techniques to extract longer-term trends in the number of hurricanes that form and where they move.

“There is no sound theoretical basis for drawing any conclusions about how anthropogenic climate change affects hurricane numbers or tracks, and thus how many hit land,” Trenberth says.

Media Contact

Anatta, EurekAlert!

More Information:

http://www.ucar.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Scientists transform blood into regenerative materials

… paving the way for personalized, blood-based, 3D-printed implants. Scientists have created a new ‘biocooperative’ material based on blood, which has shown to successfully repair bones, paving the way for…

A new experimental infection model in flies

…offers a fast and cost-effective way to test drugs. Researchers at the Germans Trias i Pujol Research Institute and Hospital have reinforced their leading role in infectious disease research by…

Material developed with novel stretching properties

KIT researchers produce metamaterial with different extension and compression properties than conventional materials. With this material, the working group headed by Professor Martin Wegener at KIT’s Institute of Applied Physics…