Crystallographers explain seismic anisotropy of Earth’s D’’layer

ETH researchers discovered a very unusual mechanism of plastic deformation in the Earth’s mantle. Furthermore, they have predicted a new family of mantle minerals. These discoveries shed new light on the plastic flow of mantle rocks inside our planet – the process that controls plate tectonics and the associated earthquakes, volcanism, and continental drift.

Plastic flow in the Earth’s mantle is the microscopic process behind plate tectonics and the associated continental drift, volcanism and earthquakes. Seismic anisotropy is the main signature of plastic flow inside the Earth. Its character depends on the properties of Earth-forming minerals. Simulations have provided a new insight that leads to a more consistent picture of the dynamics of our planet. According to seismic observations, the lowermost 150 km of the Earth’s mantle, known as the D”layer, possess many unusual properties. Many of these anomalies were explained by the properties of post-perovskite (Mg,Fe)SiO3, the dominant mineral of the D”layer. Still, it remained difficult to explain the observed strong seismic anisotropy of the D”layer. Now, thanks to metadynamics, a novel simulation methodology, ETH researcher Artem R. Oganov and colleagues have explained these seismic observations. They came up with an unexpected mechanism of plastic deformation of post-perovskite involving the formation of nanoscale slices of the lower-pressure perovskite structure along the (110) planes of post-perovskite. The ETH researchers could show that this mechanism fully explains the observed seismic anisotropy and some geophysical observations are consistent only with this mechanism.

New minerals in the Earth’s mantle

Structures containing slices of the perovskite and post-perovskite structures are not only a result of plastic deformation. Researchers have predicted a whole infinite family of minerals of the same composition, (Mg,Fe)SiO3, built of alternating nanoscale slices of the perovskite and post-perovskite structures. According to quantummechanical calculations of ETH researcher Artem R. Oganov and colleagues, such unusual minerals could become important stable minerals in the Earth’s mantle. Several research groups are now trying to synthesize these predicted minerals. If successful, these attempts will lead to a new mineralogical model of the Earth’s interior. The research results have been published in the end of 2005 in “Nature”.

For more information and pictures:
Prof. Artem R. Oganov
ETH Zurich, Laboratory of Crystallography
Phone +4 +41(0)44 632 37 52 or +41(0)43 300 18 73
E-Mail a.oganov@mat.ethz.ch

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

How marine worms regenerate lost body parts

The return of cells to a stem cell-like state as the key to regeneration. Many living organisms are able to regenerate damaged or lost tissue, but why some are particularly…

Nano-scale molecular detective

New on-chip device uses exotic light rays in 2D material to detect molecules. Researchers have developed a highly sensitive detector for identifying molecules via their infrared vibrational “fingerprint”. Published in Nature…

Novel CAR T-cell therapy

… demonstrates efficacy and safety in preclinical models of HER2-positive solid tumors. The p95HER2 protein is found expressed in one third of HER2+ tumors, which represent 4% of all tumors….