Tiny particles have outsized impact on storm clouds and precipitation
Tiny airborne particles can have a stronger influence on powerful storms than scientists previously predicted, according to a new study co-authored by University of Maryland researchers. The findings, published in the January 26, 2018 issue of the journal Science, describe the effects of aerosols, which can come from urban and industrial air pollution, wildfires and other sources.
While scientists have known that aerosols may play an important role in shaping weather and climate, the new study shows that the smallest of particles have an outsized effect. Particles smaller than one-thousandth the width of a human hair can intensify storms, increase the size of clouds and cause more rain to fall.
“This result adds to our knowledge of the interactions between aerosols, clouds and precipitation. In areas where aerosols are otherwise limited, such as remote regions of the Amazon rainforest, ultrafine aerosol particles can have a surprisingly strong effect,” said Zhanqing Li, a professor of atmospheric and oceanic science at UMD and a co-author of the study. “This finding will help us better understand the physical mechanisms of cloud development and severe storm formation, which can help us develop better storm prediction methods.”
The findings are largely based on data from the international Green Ocean Amazon research campaign, including ground-based and airborne measurements of rainforest climate and water cycling collected during the study period, which spanned 2014 to 2015.
The study focused on an area of the Amazon that is pristine except for the region around Manaus, Brazil, the largest city in the Amazon, with a population of more than 2 million people. This setting gave the researchers a rare opportunity to look at the impact of pollution on atmospheric processes in a largely pre-industrial environment, isolating the effects of the particles from other factors such as temperature and humidity.
“We showed that the presence of these particles is one reason why some storms become so strong and produce so much rain,” said Jiwen Fan, an atmospheric scientist at the Department of Energy's Pacific Northwest National Laboratory and the lead author of the study. “In a warm and humid area where atmospheric conditions are otherwise very clean, the intrusion of very small particles can make quite an impact.”
The researchers studied the storm-creating capacity of ultrafine particles that measure less than 50 nanometers across. For reference, a typical human red blood cell is about 8,000 nanometers wide.
Larger particles are known to play a role in feeding powerful, fast-moving updrafts of air, which create clouds that form water droplets that fall as rain. But until now, scientists had not observed smaller particles, such as those contained in vehicle exhaust and industrial smog, exerting the same effect.
Using detailed computer simulations, the researchers showed how smaller particles can invigorate clouds in a much more powerful way than their larger counterparts when specific conditions are present. In a warm and humid environment with no large particles to attract airborne moisture, water vapor can build up to extreme levels, causing relative humidity to spike well beyond 100 percent.
While ultrafine particles are small in size, they can reach large numbers. These particles form many small droplets that quickly and efficiently draw excess water vapor from the atmosphere. This enhanced condensation releases more heat, which makes the updrafts much more powerful. As more warm air is pulled into the clouds, more droplets are launched aloft, producing a runaway effect that results in stronger storms.
“Our findings open a new door to understanding cloud physics, which matters to both weather forecasting and climate modeling,” said Li, who has a joint appointment in UMD's Earth System Science Interdisciplinary Center (ESSIC). “In particular, cloud physicists will revisit the mechanisms of aerosol-cloud-precipitation interactions, especially for regions such as the Amazon where the environment has undergone rapid change due to urbanization and deforestation.”
###
This release was adapted from text provided by the Pacific Northwest National Laboratory.
In addition to Li, UMD atmospheric and oceanic science graduate student Yuwei Zhang is a co-author of the research paper and made significant contributions to the computer modeling effort.
The research paper, “Substantial convection and precipitation enhancements by ultrafine aerosol particles,” Jiwen Fan, Daniel Rosenfeld, Yuwei Zhang, Scott Giangrande, Zhanqing Li, Luiz Machado, Scot Martin, Yan Yang, Jian Wang, Paulo Artaxo, Henrique Barbosa, Ramon Braga, Jennifer Comstock, Zhe Feng, Wenhua Gao, Helber Gomes, Fan Mei, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, and Rodrigo de Souza, was published January 26, 2018 in the journal Science.
This work was supported by the U.S. Department of Energy's Office of Science (Award Nos. DE-AC06-76RLO1830 and DE-SC0012704), the U.S. National Science Foundation (Award No. AGS1534670), the National Science Foundation of China (Award No. 91544217), the European Commission's Project BACCHUS (FP7-603445), the CHUVA project, the Central Office of the Large Scale Biosphere Atmosphere Experiment in Amazonia, Instituto Nacional de Pesquisas da Amazonia, Universidade do Estado do Amazonas, the Fundação de Amparo à Pesquisa do Estado do Amazonas, the Sao Paolo Research Foundation (Award Nos. 2009/15235-8, 2013/05014-0, and 2013/50510-5), the Brazilian National Council for Scientific and Technological Development (Authorization No. 001030/2012-4), the German Federal Ministry of Education and Research (Award No. 01LB1001A), the Brazilian Ministério da Ciência, Tecnologia e Inovação (Award No. 01.11.01248.00), and Secretaria de Estado do Meio Ambiente e Desenvolvimento Sustentável/Centro Estadual de Unidades de Conservação/Reserva de Desenvolvimento Sustentável-Uatumã. The content of this article does not necessarily reflect the views of these organizations.
Media Relations Contact:
Matthew Wright
301-405-9267
mewright@umd.edu
University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.
About the College of Computer, Mathematical, and Natural Sciences
The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 9,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $175 million.
Media Contact
All latest news from the category: Earth Sciences
Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.
Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…