A new perspective for understanding the mechanisms of catalytic conversion
An important step in the reaction is the adsorption of CO on the surface of the catalyst. A team of scientists from the ESRF and the ETH in Zurich (Switzerland) has managed to see how the electrons in the platinum reorganize as the adsorption is taking place and why catalysts are “poisoned”, i.e. why their activity is reduced. It is the first time that this type of experiment is carried out at the same high temperatures and pressures as in a real car exhaust catalyst.
When the CO or other toxic gases get in contact with the catalyst, a noble metal such as platinum, they oxidize to become less dangerous gases. In this case, CO turns to CO2, which the car expels via the exhaust pipe. However, the efficiency of the catalytic conversion decreases considerably when the catalyst is at low temperature. The scientists from the ESRF and ETH in Zurich determined how the CO poisons the surface of the catalyst. The strong bond between CO and the platinum blocks active sites and makes the metal less susceptible to reaction with oxygen, lowering its reactivity.
Scientists around the world have studied thoroughly the electron structure of adsorbed CO using techniques like vibration and soft X-ray spectroscopy, but few have studied the electrons in the platinum, and it has proven extremely difficult to do it on nanoparticles under ambient pressure. In fact, very few experimental techniques are compatible with the required temperature, gas environment, and the low metal concentration of supported nanoparticles.
The team has developed a technique where they can investigate the platinum electrons that take part in the bond with CO. “We have, for the first time, combined a novel experimental and theoretical approach with an important application in catalysis research. This enables us to look at the adsorption of CO on Pt nanoparticles from a new perspective that was previously not accessible” explains Pieter Glatzel, scientist at the ESRF.
The next step is to look at the changes in catalyst structure under actual catalytic conditions, such as those occurring during the preferential oxidation of CO and the water gas shift reaction. “We are very hopeful of this new technique and are sure that it will enable us to improve our knowledge about catalytic systems and, with it, make them better”, says Jeroen van Bokhoven, scientist at the ETH.
Media Contact
All latest news from the category: Ecology, The Environment and Conservation
This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.
innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…