Darwin's finches have reached their limits on the Galápagos
Islands are seen as natural laboratories for the study of evolution. They form isolated ecosystems with barriers to migration. Classical Island Theory predicts that a dynamic equilibrium will occur between immigration and extinction of species. Recent theory adds that as species diversity increases, ever more ecological niches become occupied, which has a negative effect on immigration (new immigrants from outside of the Galápagos cannot settle) and diversification (radiation into new species is blocked).
Evolutionary dynamics
'However, this has never been tested in detail, for lack of data and the right analytical tools', explains Rampal Etienne, Associate Professor of Theoretical and Evolutionary Community Ecology at the University of Groningen, the Netherlands. Together with Luis Valente (University of Potsdam, Germany) and Albert Phillimore (University of Edinburgh, UK), he developed DAISIE, a mathematical model that uses phylogenetic data on living species to reconstruct evolutionary dynamics. DAISIE stands for Dynamic Assembly of Islands by Speciation, Immigration and Extinction, and was named after famous radiations of daisy-like plants on Hawaii.
DAISIE was fed with the phylogenetic trees of existing bird species on the Galápagos Islands. These were constructed with genomic data that has become available in recent years. DAISIE then estimates diversity limits and rates of immigration, speciation and extinction per lineage.
'The analysis shows that for the finches, diversity does indeed have a negative effect. There is no more room for new species, unless one of the existing species becomes extinct, so the islands are saturated regarding finch-type species', Etienne explains. This does not mean the radiation is static. 'We found that the rates of both evolution and extinction are very high for Darwin's finches. That is probably why these birds have reached an equilibrium.'
Isolated ecosystems
Other species like mockingbirds have not yet reached equilibrium, which contrasts sharply with the current view that oceanic islands are at equilibrium. 'Our data shows that they are evolving more slowly and are still diversifying.' In a million years or so, more mockingbird species may have appeared – granted that conditions on the islands remain the same.
The study shows that the DAISIE model – which the authors have made available as a library* in the free and widely used R software environment – is a valuable tool for the study of evolutionary dynamics on islands. It includes speciation and thus extends existing island theory, which is based on immigration and extinction. Etienne: 'And of course, it works for all isolated ecosystems, not just islands but also lakes or mountain tops.'
Apart from explaining evolutionary history, DAISIE also predicts future diversity. 'This could be interesting from a conservation point of view: we are not just conserving existing species, but also future diversity.'
###
*Link to the DAISIE programme: http://cran.
Media Contact
All latest news from the category: Ecology, The Environment and Conservation
This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.
innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…