Deep decarbonization of industry is possible with innovations

Industry is responsible for about 20 percent of the EU-wide greenhouse gas emissions. It will have to reduce its emissions to almost zero by 2050 to meet the targets set in the Paris Agreement. The EU Commission has developed a strategic long-term vision for a climate-neutral European economy by 2050 and presented it for discussion at the Climate summit in Katowice.

On behalf of the EU Commission, the Fraunhofer Institute for Systems and Innovation Research ISI together with ICF Consulting Services Limited explored the contribution that individual technologies can make to decarbonizing industry and the possible paths that lead to this by 2050. The study “Industrial Innovation:

Pathways to deep decarbonization of Industry” focused in particular on the industrial production of basic materials like steel, cement, ethylene, ammonia and glass: These account for the majority of industrial emissions and are simultaneously especially difficult to decarbonize.

The researchers used the FORECAST simulation model developed by Fraunhofer ISI that has a high resolution of technologies and calculated eight alternative scenarios. The results show that the greenhouse gas emissions of industry could be reduced by 80 to 95 percent by 2050 compared to 1990.

All the scenarios show that an ambitious improvement of energy efficiency can lower the costs of decarbonization and contribute substantial CO2 savings, especially in the next 10 to 20 years. But this will not be enough on its own to reduce emissions to the extent needed. A crucial factor is the rapid deployment of renewable energies to produce carbon-free electricity.

This is so important because industry‘s electricity consumption could increase strongly up to 2050 – doubling or even tripling depending on the scenario. This would be the case especially if more and more electricity were to be used to generate process heat and if important processes in the chemical and steel industries were to be converted to hydrogen produced using electrolysis.

Reducing greenhouse gases by 95 percent and therefore achieving almost completely carbon-neutral industrial production by 2050 requires fundamental changes along the value chain. These include the diffusion of low-carbon cements, more efficient material use and a comprehensive recycling sector. Capturing and storing CO2 can also play a role, for example, in reducing the remaining emissions from producing cement-clinker and lime.

Supporting carbon-neutral production processes

As the study shows, the ambitious transformation required is not possible with the technologies available today and under the existing regulatory framework. Dr. Tobias Fleiter, who heads the project at Fraunhofer ISI, emphasizes “Innovative technologies must be ready for the market between 2020 and 2030, infrastructure constructed and the regulatory framework adapted.

This requires a comprehensive mix of instruments that supports the research and development of carbon-neutral production processes and the creation of niche markets for low-carbon basic products, among other things. It is key to change not just the basic materials industries themselves, but to integrate the entire value chain.

As the biggest consumer of carbon-intensive products like steel, cement and glass, the construction sector in particular should be guided by the CO2 emissions embodied in the construction materials. This is why the cost of CO2 emissions must be factored into the prices for using these products”.

One step towards developing carbon-neutral production processes is the innovation fund (IF) currently being prepared by the EU Commission: From 2021, it should use revenue from the emissions trading system to fund research and development on decarbonizing industry, among other things.

The design of the IF and its impacts on the environment and the economy formed the focal point of another study for the EU Commission by Fraunhofer ISI in cooperation with Ecofys. For the project coordinator, Professor Wolfgang Eichhammer from Fraunhofer ISI, the IF is “an important step to fostering innovative carbon-neutral industrial processes:

Despite the recent sharp increase of the CO2 price in the emissions trading system, on its own, this will not be sufficient to make these innovative technologies economically viable in the foreseeable future. This is why companies engaged in global competition are reluctant to apply these technologies on an industrial scale. Over the next one to two decades, however, the rising CO2 price will make today’s standard technologies that are based on fossil energy sources increasingly uneconomical. The IF therefore constitutes an important building block to making these technologies economical during the initial phase and to lowering the risks for companies.”

Further information/Links:

Industrial innovation: Pathways to deep decarbonization of industry
– Part 1: Evaluation of innovations and technologies under development: https://ec.europa.eu/clima/sites/clima/files/strategies/2050/docs/industrial_inn…
– Part 2: Development and analysis of scenarios of possible decarbonization paths up to 2050: https://ec.europa.eu/clima/sites/clima/files/strategies/2050/docs/industrial_inn…
– Data annex to part 2: https://www.isi.fraunhofer.de/content/dam/isi/dokumente/cce/2019/IndustryInnovat…
– Project website: https://www.isi.fraunhofer.de/en/competence-center/energietechnologien-energiesy…

Impact on the Environment and the Economy of Technological Innovations for the Innovation Fund: https://publications.europa.eu/en/publication-detail/-/publication/669226c7-b6ff…

Fraunhofer ISI’s simulation model FORECAST: https://www.forecast-model.eu/forecast-en/index.php

EU Commission’s 2050 Long-Term Strategy: https://ec.europa.eu/clima/policies/strategies/2050_en#tab-0-1

Contact:

Anne-Catherine Jung
Head of Press and Communications

Fraunhofer Institute for Systems and Innovation Research ISI
Breslauer Strasse 48
76139 Karlsruhe
Germany

Phone +49 721 6809-100

E-mail presse@isi.fraunhofer.de

The Fraunhofer Institute for Systems and Innovation Research ISI analyzes the origins and impacts of innovations. We research the short- and long-term developments of innovation processes and the impacts of new technologies and services on society. On this basis, we are able to provide our clients from industry, politics and science with recommendations for action and perspectives for key decisions. Our expertise is founded on our scientific competence as well as an interdisciplinary and systemic research approach.

Dr. Tobias Fleiter
Coordinator of Business Unit Demand Analyses and Projections
Phone +49 721 6809-208
E-mail tobias.fleiter@isi.fraunhofer.de

Media Contact

Anne-Catherine Jung Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Humans vs Machines—Who’s Better at Recognizing Speech?

Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…

AI system analyzing subtle hand and facial gestures for sign language recognition.

Not Lost in Translation: AI Increases Sign Language Recognition Accuracy

Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…

Researcher Claudia Schmidt analyzing Arctic fjord water samples affected by glacial melt.

Breaking the Ice: Glacier Melting Alters Arctic Fjord Ecosystems

The regions of the Arctic are particularly vulnerable to climate change. However, there is a lack of comprehensive scientific information about the environmental changes there. Researchers from the Helmholtz Center…