Forest use changes life cycles of wildflowers

Study site: Beech forest near Hainich-Dün
Photo: Franziska Willems

Plant ecologists at the University of Tübingen compare temporal rhythms of early-flowering plants in different environments.

These 16 early-flowering forest understorey species were included in the study. The number at the bottom of each picture shows at how many of the 100 sites a species occurred.
Photo: Franziska Willems

One of the most striking features of global warming is that the life rhythms of plants are changing all over the world. A study at the University of Tübingen has found that human land use can also significantly influence the pace of plant life cycles. In a comparative study, a research team from the Plant Evolutionary Ecology group surveyed one hundred forest sites of different management intensities. The researchers found that in intensively managed forests, spring-flowering plants in the understory, such as wood anemones, wild garlic and wood violets, come into bloom an average of two weeks later than in near-natural forest areas. The study has been published in the latest edition of Ecological Applications.

To thrive and survive, important events in the life of plants must be take place at the right environmental conditions. Above all, plants need to reproduce. “For flowering plants, there is no more important event than flowering. Timing is crucial,” says Franziska Willems, lead author of the new study. Only when flowers are pollinated at the right time do fruits grow, containing seeds that can produce new plants.

The spring-flowering plants in the undergrowth of our forests, which include spring pea, lesser celandine and woodruff, should not open their flowers too early in the year. “They risk being damaged in frost and snow. Or their pollinators, in many cases insects, may not be out yet,” Willems says, “but if they are too late, the foliage of the trees deprives them of light.” The researchers investigated how, in addition to global warming, intensive land use – another driver of global change – affects the life cycles of these flowering plants.

Weekly check on development

“We monitored the development of wildflowers on a hundred forest plots every week throughout one spring,” working group leader Professor Oliver Bossdorf explains. The forest areas are part of Biodiversity Exploratories, an interdisciplinary project funded by the German Research Foundation to study biodiversity in Germany. The diversity of sites ranges from untouched nature reserves to heavily managed forests. “Plants in intensively used forests flowered on average two weeks later than in near-natural areas. This can largely be explained by the different structures of the forests,” Bossdorf says. The trees planted for timber production are often species that do not naturally occur in the these areas and predominantly conifers.

“These changes influence the microclimate on the forest floor;” Willems adds, “and the proportion of conifers has the greatest influence. But the age of the trees, the size of their crowns and the structural complexity of the forests also play an important role.” For example, conifers produced a cooler forest climate than deciduous trees, causing plants to flower later, the researchers found.

“What is particularly interesting, however, is that the differences in flowering times we identified cannot be explained by temperature alone,” says Willems. The planting of new tree species such as spruce – as well as the altered structure in managed forests – lead to new environmental conditions. For example, light availability or soil properties may change, and these factors could also influence when plants come into bloom.

Wissenschaftliche Ansprechpartner:

Professor Dr. Oliver Bossdorf
University of Tübingen
Faculty of Science
Institute of Evolution and Ecology – Plant Evolutionary Ecology
Phone +49 7071 29-78809 / 29-62610 (office)
oliver.bossdorf[at]uni-tuebingen.de

Originalpublikation:

Franziska M. Willems, J. F. Scheepens, Christian Ammer, Svenja Block, Anna Bucharova, Peter Schall, Melissa Sehrt, and Oliver Bossdorf: Spring understory herbs flower later in intensively managed forests. Ecological Applications, https://doi.org/10.1002/eap.2332

https://uni-tuebingen.de

Media Contact

Antje Karbe Hochschulkommunikation
Eberhard Karls Universität Tübingen

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…