Marine Lab Hunts Subtle Clues to Environmental Threats to Blue Crabs
Unfortunately, the blue crab population has been declining in recent years under the assault of viruses, bacteria and man-made contaminants. The signs of the attack often are subtle, so researchers from the National Institute of Standards and Technology (NIST) and the College of Charleston (CofC) are at work trying to identify the clues that will finger specific, yet elusive, culprits.
Pathogens and pollutants impair the blue crab’s metabolic processes, the chemical reactions that produce energy for cells. These stresses should cause tell-tale changes in the levels of metabolites, small chemical compounds created during metabolism. Working at the Hollings Marine Laboratory (HML) in Charleston, S.C., the NIST/CofC research team is using a technology similar to magnetic resonance imaging (MRI) to identify and quantify the metabolites that increase in quantity under common environmental stresses to blue crabs—metabolites that could be used as biomarkers to identify the specific sources.
In a recent paper in Metabolomics,* the HML research team describes how it used nuclear magnetic resonance (NMR) spectroscopy to study challenges to one specific metabolic process in blue crabs: oxygen uptake. First, the researchers simulated an environmentally acquired bacterial infection by injecting crabs with the bacterium Vibrio campbellii. This pathogen impairs the crab’s ability to incorporate oxygen during metabolism. Using NMR spectroscopy to observe the impact on metabolite levels, the researchers found that the yield of glucose, considered a reliable indicator of mild oxygen starvation in crustaceans, was raised.
In a second experiment, the HML team mimicked a chemical pollutant challenge by injecting blue crabs with a chemical** known to inhibit oxidative phosphorylation, a metabolic process that manufactures energy. This time, the metabolite showing up in response to stress was lactate, the same compound seen when our muscles need energy and must take in oxygen to get more produced. A rise in the amount of lactate proved that the crabs were increasing their oxygen uptake in response to the chemical exposure.
“Having the glucose and lactate biomarkers—and the NMR spectroscopy technique to accurately detect them—is important because the blue crab’s responses to mild, non-lethal metabolic stresses are often so subtle that they can be missed by traditional analyses,” says Dan Bearden, corresponding author on the HML paper.
The research was supported in part by the National Science Foundation.
The HML is a partnership of governmental and academic agencies including NIST, NOAA’s National Ocean Service, the South Carolina Department of Natural Resources, the College of Charleston and the Medical University of South Carolina.
* T.B. Schock, D.A. Stancyk, L. Thibodeaux, K.G. Burnett, L.E. Burnett, A.F.B. Boroujerdi and D.W. Bearden. Metabolomic analysis of Atlantic blue crab, Callinectes sapidus, hemolymph following oxidative stress. Metabolomics, Published online Jan. 20, 2010, DOI 10.1007/s11306-009-0194-y.
** 2,4-dinitrophenol (DNP)
Michael E. Newman, michael.newman@nist.gov, (301) 975-3025
Media Contact
More Information:
http://www.nist.govAll latest news from the category: Ecology, The Environment and Conservation
This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.
innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.
Newest articles
Scientists transform blood into regenerative materials
… paving the way for personalized, blood-based, 3D-printed implants. Scientists have created a new ‘biocooperative’ material based on blood, which has shown to successfully repair bones, paving the way for…
A new experimental infection model in flies
…offers a fast and cost-effective way to test drugs. Researchers at the Germans Trias i Pujol Research Institute and Hospital have reinforced their leading role in infectious disease research by…
Material developed with novel stretching properties
KIT researchers produce metamaterial with different extension and compression properties than conventional materials. With this material, the working group headed by Professor Martin Wegener at KIT’s Institute of Applied Physics…