Plastic gets a do-over: Breakthrough discovery recycles plastic from the inside out

Unlike conventional plastics, the monomers of PDK plastic could be recovered and freed from any compounded additives simply by dunking the material in a highly acidic solution. Credit: Peter Christensen et al./Berkeley Lab

Light yet sturdy, plastic is great – until you no longer need it. Because plastics contain various additives, like dyes, fillers, or flame retardants, very few plastics can be recycled without loss in performance or aesthetics.

Even the most recyclable plastic, PET – or poly(ethylene terephthalate) – is only recycled at a rate of 20-30%, with the rest typically going to incinerators or landfills, where the carbon-rich material takes centuries to decompose.

Now a team of researchers at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) has designed a recyclable plastic that, like a Lego playset, can be disassembled into its constituent parts at the molecular level, and then reassembled into a different shape, texture, and color again and again without loss of performance or quality. The new material, called poly(diketoenamine), or PDK, was reported in the journal Nature Chemistry.

“Most plastics were never made to be recycled,” said lead author Peter Christensen, a postdoctoral researcher at Berkeley Lab's Molecular Foundry. “But we have discovered a new way to assemble plastics that takes recycling into consideration from a molecular perspective.”

Christensen was part of a multidisciplinary team led by Brett Helms, a staff scientist in Berkeley Lab's Molecular Foundry. The other co-authors are undergraduate researchers Angelique Scheuermann (then of UC Berkeley) and Kathryn Loeffler (then of the University of Texas at Austin) who were funded by DOE's Science Undergraduate Laboratory Internship (SULI) program at the time of the study. The overall project was funded through Berkeley Lab's Laboratory Directed Research and Development program.

All plastics, from water bottles to automobile parts, are made up of large molecules called polymers, which are composed of repeating units of shorter carbon-containing compounds called monomers.

According to the researchers, the problem with many plastics is that the chemicals added to make them useful – such as fillers that make a plastic tough, or plasticizers that make a plastic flexible – are tightly bound to the monomers and stay in the plastic even after it's been processed at a recycling plant.

During processing at such plants, plastics with different chemical compositions – hard plastics, stretchy plastics, clear plastics, candy-colored plastics – are mixed together and ground into bits. When that hodgepodge of chopped-up plastics is melted to make a new material, it's hard to predict which properties it will inherit from the original plastics.

This inheritance of unknown and therefore unpredictable properties has prevented plastic from becoming what many consider the Holy Grail of recycling: a “circular” material whose original monomers can be recovered for reuse for as long as possible, or “upcycled” to make a new, higher quality product.

So, when a reusable shopping bag made with recycled plastic gets threadbare with wear and tear, it can't be upcycled or even recycled to make a new product. And once the bag has reached its end of life, it's either incinerated to make heat, electricity, or fuel, or ends up in a landfill, Helms said.

“Circular plastics and plastics upcycling are grand challenges,” he said. “We've already seen the impact of plastic waste leaking into our aquatic ecosystems, and this trend is likely to be exacerbated by the increasing amounts of plastics being manufactured and the downstream pressure it places on our municipal recycling infrastructure.”

Recycling plastic one monomer at a time

The researchers want to divert plastics from landfills and the oceans by incentivizing the recovery and reuse of plastics, which could be possible with polymers formed from PDKs. “With PDKs, the immutable bonds of conventional plastics are replaced with reversible bonds that allow the plastic to be recycled more effectively,” Helms said.

Unlike conventional plastics, the monomers of PDK plastic could be recovered and freed from any compounded additives simply by dunking the material in a highly acidic solution. The acid helps to break the bonds between the monomers and separate them from the chemical additives that give plastic its look and feel.

“We're interested in the chemistry that redirects plastic lifecycles from linear to circular,” said Helms. “We see an opportunity to make a difference for where there are no recycling options.” That includes adhesives, phone cases, watch bands, shoes, computer cables, and hard thermosets that are created by molding hot plastic material.

The researchers first discovered the exciting circular property of PDK-based plastics when Christensen was applying various acids to glassware used to make PDK adhesives, and noticed that the adhesive's composition had changed. Curious as to how the adhesive might have been transformed, Christensen analyzed the sample's molecular structure with an NMR (nuclear magnetic resonance) spectroscopy instrument. “To our surprise, they were the original monomers,” Helms said.

After testing various formulations at the Molecular Foundry, they demonstrated that not only does acid break down PDK polymers into monomers, but the process also allows the monomers to be separated from entwined additives.

Next, they proved that the recovered PDK monomers can be remade into polymers, and those recycled polymers can form new plastic materials without inheriting the color or other features of the original material – so that broken black watchband you tossed in the trash could find new life as a computer keyboard if it's made with PDK plastic. They could also upcycle the plastic by adding additional features, such as flexibility.

Moving toward a circular plastic future

The researchers believe that their new recyclable plastic could be a good alternative to many nonrecyclable plastics in use today.

“We're at a critical point where we need to think about the infrastructure needed to modernize recycling facilities for future waste sorting and processing,” said Helms. “If these facilities were designed to recycle or upcycle PDK and related plastics, then we would be able to more effectively divert plastic from landfills and the oceans. This is an exciting time to start thinking about how to design both materials and recycling facilities to enable circular plastics,” said Helms.

The researchers next plan to develop PDK plastics with a wide range of thermal and mechanical properties for applications as diverse as textiles, 3D printing, and foams. In addition, they are looking to expand the formulations by incorporating plant-based materials and other sustainable sources.

###

The Molecular Foundry is a DOE Office of Science User Facility that specializes in nanoscale science.

This work was supported by the DOE's Laboratory Directed Research and Development (LDRD) program with additional funding provided by the DOE Office of Science through the SULI program.

The technology is available for licensing and collaboration. If interested, please contact Berkeley Lab's Intellectual Property Office, ipo@lbl.gov.

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab's facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Laurel Kellner
LKellner@lbl.gov
510-590-8034

 @BerkeleyLab

http://www.lbl.gov 

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Humans vs Machines—Who’s Better at Recognizing Speech?

Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…

AI system analyzing subtle hand and facial gestures for sign language recognition.

Not Lost in Translation: AI Increases Sign Language Recognition Accuracy

Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…

Researcher Claudia Schmidt analyzing Arctic fjord water samples affected by glacial melt.

Breaking the Ice: Glacier Melting Alters Arctic Fjord Ecosystems

The regions of the Arctic are particularly vulnerable to climate change. However, there is a lack of comprehensive scientific information about the environmental changes there. Researchers from the Helmholtz Center…