North Atlantic warming tied to natural variability; but global warming may be at play elsewhere
This striking pattern can be explained largely by the influence of a natural and cyclical wind circulation pattern called the North Atlantic Oscillation (NAO), wrote authors of a study published Thursday, Jan. 3, in Science Express, the online edition of the journal Science.
Winds that power the NAO are driven by atmospheric pressure differences between areas around Iceland and the Azores. “The winds have a tremendous impact on the underlying ocean,” said Susan Lozier, a professor of physical oceanography at Duke’s Nicholas School of the Environment and Earth Sciences who is the study’s first author.
Other studies cited in the Science Express report suggest human-caused global warming may be affecting recent ocean heating trends. But Lozier and her coauthors found their data can’t support that view for the North Atlantic. “It is premature to conclusively attribute these regional patterns of heat gain to greenhouse warming,” they wrote.
“The take-home message is that the NAO produces strong natural variability,” said Lozier in an interview. “The simplistic view of global warming is that everything forward in time will warm uniformly. But this very strong natural variability is superimposed on human-caused warming. So researchers will need to unravel that natural variability to get at the part humans are responsible for.”
In research supported by the National Science Foundation in the United States and the Natural Environment Research Council in the United Kingdom, her international team analyzed 50 years of North Atlantic temperature records collected at the National Oceanic Data Center in Washington, D.C.
To piece together the mechanisms involved in the observed changes, their analysis employed an ocean circulation model that predicts how winds, evaporation, precipitation and the exchange of heat with the atmosphere influences the North Atlantic’s heat content over time. They also compared those computer predictions to real observations “to test the model’s skill,” the authors wrote.
Her group’s analysis showed that water in the sub-polar ocean –- roughly between 45 degrees North latitude and the Arctic Circle –- became cooler as the water directly exchanged heat with the air above it.
By contrast, NOA-driven winds served to “pile up” sun-warmed waters in parts of the subtropical and tropical North Atlantic south of 45 degrees, Lozier said. That retained and distributed heat at the surface while pushing underlying cooler water further down.
The group’s computer model predicted warmer sea surfaces in the tropics and subtropics and colder readings within the sub-polar zone whenever the NAO is in an elevated state of activity. Such a high NAO has been the case during the years 1980 to 2000, the scientists reported.
“We suggest that the large-scale, decadal changes…associated with the NAO are primarily responsible for the ocean heat content changes in the North Atlantic over the past 50 years,” the authors concluded.
However, the researchers also noted that this study should not be viewed in isolation. Given reported heat content gains in other oceans basins, and rising air temperatures, the authors surmised that other parts of the world's ocean systems may have taken up the excess heat produced by global warming.
“But in the North Atlantic, any anthropogenic (human-caused) warming would presently be masked by such strong natural variability,” they wrote.
Media Contact
More Information:
http://www.duke.eduAll latest news from the category: Ecology, The Environment and Conservation
This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.
innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.
Newest articles
Recharging the Future: Batteries Built for Extreme Cold Using Negative Thermal Expansion
Most solids expand as temperatures increase and shrink as they cool. Some materials do the opposite, expanding in the cold. Lithium titanium phosphate is one such substance and could provide…
Self-Destructing Cancer Cells: Cutting-Edge RNA Breakthrough
Jülich scientists use novel RNA technology to selectively switch off tumours in the brain. An Adaptable Platform Technology That Destroys Glioblastoma Cancer Cells Using a special RNA molecule, a team…
Endurance Training: Transforming Lives of Heart Failure Patients
Can strength and endurance training be beneficial for patients with a certain form of heart failure? A research team from Greifswald investigated this question together with seven other research centers…