A dash of lime – a new twist that may cut Co2 levels back to pre-industrial levels
Shell is so impressed with the new approach that it is funding an investigation into its economic feasibility. ‘We think it’s a promising idea,’ says Shell’s Gilles Bertherin, a coordinator on the project.
‘There are potentially huge environmental benefits from addressing climate change – and adding calcium hydroxide to seawater will also mitigate the effects of ocean acidification, so it should have a positive impact on the marine environment.’
Adding lime to seawater increases alkalinity, boosting seawater’s ability to absorb CO2 from air and reducing the tendency to release it back again.
However, the idea, which has been bandied about for years, was thought unworkable because of the expense of obtaining lime from limestone and the amount of CO2 released in the process.
Tim Kruger, a management consultant at London firm Corven is the brains behind the plan to resurrect the lime process. He argues that it could be made workable by locating it in regions that have a combination of low-cost ‘stranded’ energy considered too remote to be economically viable to exploit – like flared natural gas or solar energy in deserts – and that are rich in limestone, making it feasible for calcination to take place on site.
Kruger says: ‘There are many such places – for example, Australia’s Nullarbor Plain would be a prime location for this process, as it has 10 000km3 of limestone and soaks up roughly 20MJ/m2 of solar irradiation every day.’
The process of making lime generates CO2, but adding the lime to seawater absorbs almost twice as much CO2. The overall process is therefore ‘carbon negative’.
‘This process has the potential to reverse the accumulation of CO2 in the atmosphere. It would be possible to reduce CO2 to pre-industrial levels,’ Kruger says.
And Professor Klaus Lackner, a researcher in the field from Columbia University, says: ‘The theoretical CO2 balance is roughly right…it is certainly worth thinking through carefully.’
The oceans are already the world’s largest carbon sink, absorbing 2bn tonnes of carbon every year. Increasing absorption ability by just a few percent could dramatically increase CO2 uptake from the atmosphere.
This project is being developed in an open source manner. To find out more, please go to www.cquestrate.com, a new website, launched today.
For a full copy of the article, contact: Meral Nugent,
Press and Public Relations Manager,
T: +44 (0)20 7598 1533, F: +44 (0) 20 7598 1545, Mob: 07931 315077
E: meral.nugent@soci.org
Media Contact
More Information:
http://www.soci.orgAll latest news from the category: Ecology, The Environment and Conservation
This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.
innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.
Newest articles
Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans
The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…